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Abstract. We define the beltramized flow as the sum of an uniform translation and an
uniform rotation with a Beltrami flow. Some of their features are studied by solving the Euler
equations, for different geometries, taking into account the boundary conditions, and for different
symmetries. We show that the Kelvin waves are beltramized flows. Finally, we show that the
variational principle found in a previous work, remains valid for the beltramized flow.

1. Introduction

The Beltrami flow defined as ωB = ∇ × vB = γvB,. has been treated in several contexts
[1], [2], [3]. Its importance lies on that it has nonlinear solutions of Euler and Navier-Stokes
equations, and it has relevance for the lagrangian turbulence. And some other properties as
being eigenfunctions of the curl operator and then they can be superposed linearly.

In previous works [4], [5] we have considered meanly two aspects: the formation of Kelvin
waves 1 with, what we called, Beltrami structure, in an expansion, and the existence of a
variational principle similar to that introduced by Woltjer in Magnetohyrodynamics concerning
the force-free magnetic fields that have a topological analogy with the vorticity field. But in the
first case [4], the whole flow is not a pure Beltrami flow but the sum of a Rankine flow plus a
Beltrami flow what we will denominate beltramized flow. And it is related to the Kelvin waves
and is also important because the breakdown phenomena can develops from it [8]. Nevertheless
when considering Kelvin waves [9] or steady axisymmetric swirling [10] flow in an expansion the
Beltrami structure of the flow is not generally considered as it is done, for example, by Dritcshel
[2].

The aim of this paper is to consider the two aspects just pointed out. On the one hand
we establish the dynamics of the beltramized flow and get solutions by considering different
geometries and symmetries, showing that it results to be Kelvin Waves. We see that the
eigenvalue of the beltramized flow is closely related to the boundary conditions. And that
the steady state swirling flow is obtained as a particular case. On the other hand, we extend
the variational principle introduced for pure Beltrami flows [5] to beltramized flows.

1 Here the Kelvin waves are given in the sens introduced by Kelvin [6]
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In section (2) write the dynamic equation for the beltramized flow. In section (3) we get
the solutions for different geometries and symmetries and taking into account the boundary
conditions. In section (4) we extend the variational principle for Beltrami flows to a beltramized
ones. Finally in section (5) we write the conclusions.

2. The dynamic equation for the beltramized flow.

The Beltrami flow is defined as a field vB that satisfies ωB = ∇×vB = γvB, with γ = constant.
On the other hand, we define a beltramized flow as

v = Uez + Ωreθ + vB, (1)

being U and Ω constants, i.e a beltramized flow is the superposition of a Rankine flow with a
Beltrami one. As the dynamical equations are satisfied in any inertial frame of reference, we
do not consider here the uniform translation , or, in other words, we work in a frame which is
translating with velocity Uez.

Furthermore, to take into account the uniform rotation, we will consider our analysis in
a non-inertial frame rotating with the angular velocity Ω = Ωez, and recover the uniform
translation when it corresponds trough the boundary conditions. Therefore the inertial terms,
i.e. Centrifugal and Coriolis ones, are added to the RHS of Euler ’ s equation (see for example
[9] paragraph 14 ):

∂v

∂t
= v × ω − 2Ω × v −

1

ρ
∇H, (2)

where H ≡ p+ v2

2 − 1
2ρ(Ω × r)2.

If now we set v = vB ⇒ vB × ωB = 0. Then

∂vB

∂t
= 2vB × Ω −

1

ρ
∇H . (3)

Finally, applying ∇× to both members of the last equation and using the definition of
Beltrami flow we have

γ
∂vB

∂t
= −2Ω∇ · vB + 2(Ω · ∇)vB , (4)

which can be condensed in the following system of equations:

∂vB

∂t
=

2Ω

γ

∂vB

∂z
, (5)

∇ · vB = 0, (6)

∇× vB = γvB , (7)

where the eigenvalue γ will be determined together with their solutions. This system of equations
in fact verifies that a Rankine flow plus a Beltrami flow gives a solution of Euler ’s equations,
as was demonstrated in [5].

3. Solutions of the Euler equations by considering the geometries and the

symmetries

Here we consider different geometries and symmetries in order to solve the dynamical system
given by (5), (6) and (7) which, from now on, will be called DS.
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3.1. Rectangular geometry (plane waves).
We seek the solution of DS as a plane wave in an infinite fluid

vB = Aei(k·r−ωt), (8)

where A = constant.
Substituting (8) in DS we have

ω = −
2Ω

γ
kz, (9)

k · A = 0, (10)

k

γ
× vB = −ivB. (11)

From where, according to (10) and (11) we obtain γ = k, and then Eq. (9) becomes

ω = −
2Ωkz

k
. (12)

which coincides with Eq. (14.8) of [9].
Now, we follow an analog approach as that given in [9] section 14. Defining n ≡ k

k , if we use
a complex wave amplitude in the form A = a + ib with real vectors a and b, it follows that
n × b = −a and n × a = b: the vectors a and b (both lying in the plane purpendicular to k)
are orthogonal and equal in magnitude. By taking their directions as the x and y axes, and
separating real and imaginary parts in Eq. (8), we obtain

vBx = a cos (k · r − ωt) ; vBy = −a sin (k · r − ωt) (13)

or

vBx = a cos (kz + 2Ωt) ; vBy = −a sin (kz + 2Ωt) (14)

where a is a constant of finite amplitude.

3.2. Tubes with cylindrical and non-cylindrical geometries
Here we consider two possible geometries:

a) Cylindrical geometry: we consider a cylinder of radius R.

b) Non-cylindrical geometry: tubes with variable section, as for example in fig. 1. In this
case the conditions of continuities between regions should be considered besides the boundary
conditions, in order to find the solution for the whole tube region.

The boundary conditions for the beltramized flow are:

Case a)
given that n = er it is n · ez = n · eθ = 0 and then from (1)
v · n = 0 and ω · n = 0 ⇒ vB · n = 0 .

Case b)
v · n = 0 = Uez · n + Ωr(n · eθ) + vB · n, and
ω · n = 0 = 2Ωez · n + γvB · n, but, because of the circular geometry of the tube, n · eθ = 0

and from last equations we obtain that (2Ω − γU)ez · n = 0. Now, for tubes with regions for
which ez · n 6= 0 it must be 2Ω − γU = 0, or
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Figure 1. Non cylindrical tube geometry: it may have regions of constant and variable sections

γ =
2Ω

U
. (15)

From now on we consider different symmetries of the flow in a cylinder (case a) or in different
regions of the non-cylindrical geometry (case b).

3.2.1. Flow with axial symmetry
For this symmetry, the general solution for the DS is:

vB = v(r)ei(kz−ωt+∆), (16)

with k, ω and ∆ constants quantities. From Eq. (5) we obtain

ω = −
2Ω

γ
k, (17)

and from Eq(6) it follows

vB = (−
1

r

∂ψ

∂z
, vθ,

1

r

∂ψ

∂r
), (18)

where vθ = vθ(r, z). Then from (7) we have

∇× vB = −
1

r

∂

∂z
(rvθ)er +

[

−
1

r

∂2ψ

∂z2
−

∂

∂r

(

1

r

∂ψ

∂r

)

]

eθ +
1

r

∂

∂r
(rvθ)ez = γvB, (19)

and from (18) and (19) it follows that:

vθ = γ
ψ

r
, (20)

∂2ψ

∂z2
+ r

∂

∂r

(

1

r

∂ψ

∂r

)

+ γ2ψ = 0 (21)

from where, defining ψ(r, z) = F (r) sin (kz − ωt+ ∆) we arrives to a solution which is well
behaved at r = 0, i.e. it does not diverges at that point:
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ψ = ArJ1[(γ
2 − k2)1/2r] sin (kz − ωt+ ∆). (22)

We consider now the boundary conditions so we have by taking into account of Eq. (17).

Case a:

ψ = ArJ1[k(
4Ω2

ω2
− 1)1/2r] sin (kz − ωt+ ∆), (23)

with k(4Ω2

ω2 − 1)1/2R = xn as the eigenvalue equation for which vr(R) = 0, where xn are the
zeros of J1[x].

Case b:

ψ = ArJ1[(
4Ω2

U2
− k2)1/2r] sin [k(z + Ut) + ∆], (24)

from which we can get an steady state solution by moving in a reference frame with velocity
Uez. Here A is a constant of finite amplitude.

3.2.2. Flow with cylindrical symmetry
In this situation the flow do not depend on θ nor on z so from Eq.(5) we have an steady

solution, and it reads as:
case a:

ψ = ArJ1[γr], (25)

case b:

ψ = ArJ1[
2Ω

U
r], (26)

where A is a constant of finite amplitude.

3.2.3. Flow with helical symmetry

In this case defining φ = θ − κz we have
(

∂vB

∂z

)

θ,r
= −κ

(

∂vB

∂φ

)

r,z
, so that we can put (5) in

the form:

∂vB

∂t
= −κ

2Ω

γ

∂vB

∂φ
. (27)

Then we consider the solution:

vB = v(r)ei(nφ−ωt), (28)

with n integer, and then we have:

ω = −
2Ω

γ
κn. (29)

The Eqs. (6) and (7) are satisfied if the flow vB takes the form [5]

vBr = −C[
µn

κ
J ′

n(µnr) −
γ

κ2r
Jn(µnr)] cos[Λ(n, t)], (30)

vBθ = C[
n

κr
Jn(µnr) −

µnγ

κ2n
J ′

n(µnr)] sin[Λ(n, t)], (31)

vBz = C[
µ2

n

κ2n
Jn(µnr)] sin[Λ(n, t)], (32)
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where C is a constant of finite amplitude, and where :

case a:

µ2 = γ2 − n2κ2, Λ(n, t) = n(φ+
2Ω

γ
κt), (33)

case b:

µ2 = n2(
4Ω2

U2
− κ2), Λ(n, t) = n(φ+ Uκt). (34)

4. A variational property

In previous works [4], [5] we have considered the topological analogy between the Hydrodynamics
and the Magnetohydrodynamics, and showed that the enstrophy plays the same role than the
magnetic energy in Woljter’s theorem [7], in the sense that the Beltrami flow equilibrium with
constant eigenvalue is obtained when the enstrophy is extremized with the constraint that the
helicity is conserved.

We show that the same principle is valid for beltramized flows as defined by Eq. 1. For doing
that we take the flow

v = Uez + Ωreθ + ṽ, (35)

ω = 2Ωez + ω̃, (36)

and demonstrate that when ṽ = ṽB, then δ[Φ − γHω] = 0, where Φ = 1
2

∫

ω2dV and
Hω =

∫

v.ω dV .
In this case ṽ, and ω̃ = ∇× ṽ are the velocity and the vorticity with regards to the uniform

translation and rotation.
To show that, it is necesary to prove that

δ[Φ − γHω] = δ[Φ̃ − γH
ω̃

], (37)

where Φ̃ = 1
2

∫

ω̃2dV and H
ω̃

=
∫

ṽ.ω̃ dV , and then to follow the steps given in [4] for the
RHS of Eq.(37) assuming that the variations δṽ = δω̃ = 0 on the boundary.

Really, taking into account Eqs. (35),(36) we have

δΦ =

∫

Ωez · δω̃dV + δΦ̃. (38)

But

∫

Ωez · δω̃dV =

∫

Ωez · ∇ × δṽdV =

∫

∇ · (δṽ × Ωez)dV =

∫

n̂ · (δṽ × Ωez)dS = 0. (39)

In the same way

δHω =

∫

Uez · δω̃dV +

∫

Ωreθ · δω̃dV +

∫

2Ωez · δṽdV + δH
ω̃
. (40)

And as in Eq (39), we can see that

∫

Uez · δω̃dV =

∫

Ωreθ · δω̃dV =

∫

2Ωez · δṽdV = 0, (41)
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where we have used tha Ωreθ · ∇ × δṽ = ∇ · (δṽ × Ωreθ) + 2Ωez · δṽ, and that as ∇ · ṽ = 0
is ṽ = ∇× A.

Therefore Eq (37) is accomplished, and then from δ[Φ̃ − γH
ω̃

] = 0 we get ω̃ = γṽ that is to
say that ṽ = ṽB.

5. Conclussions

We can resume our conclusions with the following points

• The beltramized flow obeys to the dynamic equations SD Eqs.(5-7).

• Their general solutions are represented by traveling waves of finite amplitude that are the
so called Kelvin waves showing that these waves have a beltramized structure.

• The γ eigenvalue of the beltramized flow depends on the geometry considered by mean of
the boundary conditions.
i) In a rectangular geometry in an infinite fluid the eigenvalue is γ = k the modulus of the
vector wave.
ii) In a cylindrical geometry of radius R, γ results from the boundary condition v(r=R) = 0
iii) In a non-cylindrical geometry of tubes of variable section, the eigenvalue is given by
γ = 2Ω

U . In this case we could have different regions (see Figure 1), some of which have
cylindrical geometry, but in order to accomplish the boundary conditions of the whole flow,
γ must have this unique value. On the other hand, the whole solution is obtained by
considering the continuity conditions among different regions, which means to determine
the constant coefficients of the solutions in each region.

• The Beltramized flow is the result of extreming the enstrophy subject to the helicity
conservation, extending in this way the result [4] for a pure Beltrami flow.
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