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ABSTRACT

We measured the gas abundance profiles in a sample of 122 face-on spiral galaxies observed by the CALIFA survey and included all
spaxels whose line emission was consistent with star formation. This type of analysis allowed us to improve the statistics with respect
to previous studies, and to properly estimate the oxygen distribution across the entire disc to a distance of up to 3-4 disc effective radii
(re). We confirm the results obtained from classical H ii region analysis. In addition to the general negative gradient, an outer flattening
can be observed in the oxygen abundance radial profile. An inner drop is also found in some cases. There is a common abundance
gradient between 0.5 and 2.0 re of αO/H = − 0.075 dex/re with a scatter of σ = 0.016 dex/re when normalising the distances to the
disc effective radius. By performing a set of Kolmogorov-Smirnov tests, we determined that this slope is independent of other galaxy
properties, such as morphology, absolute magnitude, and the presence or absence of bars. In particular, barred galaxies do not seem
to display shallower gradients, as predicted by numerical simulations. Interestingly, we find that most of the galaxies in the sample
with reliable oxygen abundance values beyond ∼ 2 effective radii (57 galaxies) present a flattening of the abundance gradient in these
outer regions. This flattening is not associated with any morphological feature, which suggests that it is a common property of disc
galaxies. Finally, we detect a drop or truncation of the abundance in the inner regions of 27 galaxies in the sample; this is only visible
for the most massive galaxies.

Key words. Galaxies: abundances – Galaxies: evolution – Galaxies: ISM – Galaxies: spiral – Techniques: imaging spectroscopy –
Techniques: spectroscopic

1. Introduction

Understanding how disc galaxies form and evolve is one of the
greatest challenges in galactic astronomy. Some of the remain-

ing unsolved fundamental questions are comprehending the pro-
cesses that are involved in the assembly of galaxies of different
masses, the relative importance of mergers versus continuous gas
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accretion infall into the disc, the rate of metal enrichment, and
the angular momentum transfers during these processes.

The distribution of gas chemical abundances and stellar pa-
rameters as well as their variation in space and time are im-
portant tools for answering these questions on the evolution of
discs in spiral galaxies. Infall models of galaxy formation predict
that spiral discs build up through accretion of material, which
leads to an inside-out growth (Matteucci & Francois 1989; Molla
et al. 1996; Boissier & Prantzos 1999). The accretion brings gas
into the inner parts of the discs, where it reaches high densi-
ties that trigger violent and quite efficient star formation. Thus,
there is a fast reprocessing of gas in the inner regions, which
leads to a population of old, metal-rich stars surrounded by a
high-metallicity gaseous environment, while the outer regions
are populated by younger, metal-poor stars formed from poorly
enriched material. The first evidence that supports this scenario
for disc evolution comes from studies on stellar colour profiles
in nearby galaxies, which find bluer colours in the outer parts
(e.g. de Jong 1996; MacArthur et al. 2004; Taylor et al. 2005;
Muñoz-Mateos et al. 2007). This blueing can be interpreted on
the basis of a change in the disc scale-length as a function of the
observed wavelength band. This result is predicted by models
based on the inside-out growth (Prantzos & Boissier 2000). To
explain the nature of these colour gradients, recent works have
analysed the radial change in the star formation history (SFH,
Sánchez-Blázquez et al. 2009; Pérez et al. 2013).

Another independent result that is consistent with this sce-
nario comes from the weak dependence of disc galaxies with
redshift on the stellar mass-size relation. According to the inside-
out growth of discs, galaxies are expected to increase their scale
lengths with time as they grow in mass (Barden et al. 2005; Tru-
jillo et al. 2004, 2006), resulting in a constant mass-size relation
with cosmic time.

In this context, the study of the interstellar medium (ISM) is
crucial to understand the chemical evolution of galaxies, since
the enriched material is expelled during the evolution of stars,
is mixed with the already existing gas, and condenses to form
new stars. The ISM is fundamentally gaseous, and its chemical
abundance can be derived by analysing spectroscopic features,
that is, nebular emission lines. These emission lines are excited
by photoionisation of the interstellar gas by hot and young mas-
sive stars (Aller 1984; Osterbrock 1989), which form clouds of
ionised hydrogen (H ii regions) where star formation (among
other processes) takes place. As oxygen is the most abundant
heavy element in Universe, this makes it the best proxy for the
total gas metallicity.

The study of the Milky Way (MW) is also an exceptional
tool for our understanding of galaxy evolution, mainly because
we can observe both the stellar and the gaseous components
in greater detail than in other galaxies. Among other chemical
properties of our Galaxy, the gas abundance gradient has been
extensively studied (e.g. Shaver et al. 1983; Deharveng et al.
2000; Pilyugin et al. 2003; Esteban et al. 2005; Quireza et al.
2006; Rudolph et al. 2006; Balser et al. 2011); it is still not
properly traced, however, especially in the inner parts. There-
fore, complementary information coming from data of external
galaxies would help us to overcome this problem.

The study of the gas metallicity in external individual galax-
ies using spectroscopic data allows us to shed light on funda-
mental physical properties of galaxies, such as SFR (e.g. Ellison
et al. 2008; Lara-López et al. 2010; López-Sánchez 2010), mass
and luminosity (e.g. Lequeux et al. 1979; Skillman et al. 1989;
Tremonti et al. 2004; Rosales-Ortega et al. 2012), effective yield
and rotation velocity (e.g. Vila-Costas & Edmunds 1992; Garnett

2002; Pilyugin et al. 2004; Dalcanton 2007), or stellar-to-gas
fraction (e.g. Zahid et al. 2014; Ascasibar et al. 2015). More-
over, studying these relations at different redshifts can help us to
understand the assembly history and evolution of galaxies (e.g.
Kobulnicky & Koo 2000; Maiolino et al. 2008; Mannucci et al.
2009, 2010; Belli et al. 2013). The inside-out scenario is not only
supported by studies focused on the stellar content in galaxies.
Gas metallicity studies have also been key elements in favour of
such disc growth, predicting a relatively quick self-enrichment
with oxygen abundances and an almost universal negative metal-
licity gradient once it is normalised to the galaxy optical size
(Boissier & Prantzos 1999, 2000). Several observational studies
have found this radial decrease in the oxygen abundance along
the discs of nearby galaxies (e.g. Vila-Costas & Edmunds 1992;
Zaritsky et al. 1994; van Zee et al. 1998; Bresolin et al. 2009;
Moustakas et al. 2010; Rich et al. 2012).

However, gas metallicity studies have also presented evi-
dence of the existence of some behaviours in the oxygen abun-
dance profiles that deviate from the pure inside-out scenario: A
decrease or a nearly flat distribution of the abundance in the in-
nermost region of discs, first observed by Belley & Roy (1992);
and a flattening in the gradient in the outer regions measured in
several works (Martin & Roy 1995; Vilchez & Esteban 1996;
Roy & Walsh 1997, among others). These features have been
theoretically suggested to be motivated, for instance, by the pres-
ence of radial migration (Minchev et al. 2011, 2012). Neverthe-
less, their origin is still unknown.

All these spectroscopic studies were limited by statistics, ei-
ther in the number of observed H ii regions or in the coverage
of these regions across the galaxy surface. The advent of inte-
gral field spectroscopy (IFS) techniques offers astronomers the
opportunity to overcome these limitations by tracing the distri-
bution of ionised gas and estimating spatially resolved chemical
abundances for the gas phase. Its two-dimensional spatial cov-
erage allows us to extract several hundreds or even thousands of
spectra across the entire galaxy extent. This enables studying the
variation of gas properties throughout the whole disc.

Moreover, IFS surveys offer the opportunity of extending
the study to a large number of objects, allowing for meaningful
statistical analysis. However, until recently, this technique was
rarely used in a survey mode. There were only a few exceptions
such as the SAURON survey (Bacon et al. 2001) and the Disk
Mass Survey (Bershady et al. 2010).

These pioneering projects were not optimal for a statisti-
cal study of the properties of H ii regions because they incom-
pletely covered the full extent of the galaxies, among other rea-
sons. Such a statistical study started with the development of the
PINGS project (Rosales-Ortega et al. 2010), which acquired IFS
mosaic data for a dozen very nearby galaxies. This project was
followed by the observation of a larger sample of face-on spiral
galaxies (Mármol-Queraltó et al. 2011) as part of the feasibil-
ity studies for the CALIFA survey (Sánchez et al. 2012a). The
advent of CALIFA allowed extending the study to much more
representative samples of nearby galaxies by covering all mor-
phologies.

Based on large-statistics samples of H ii regions extracted
from galaxies observed by these programs, Sánchez et al.
(2012b, 2014) studied the distribution of metals within star-
forming galaxies and provided the strongest evidence so far for
a characteristic gas abundance gradient out to two effective radii
(re). These studies also confirmed the behaviours mentioned
above that deviate from this gradient, as previously observed by
other IFS works on individual galaxies (e.g. Bresolin et al. 2009;
Sánchez et al. 2011; Rosales-Ortega et al. 2011; Bresolin et al.
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2012; Marino et al. 2012). However, by selecting H ii regions
they did not take advantage of the full capability of an IFS study
and restricted the study to isolated areas of the galaxies.

Current IFS surveys (e.g. ATLAS3D, Cappellari et al. 2011;
CALIFA, Sánchez et al. 2012a; SAMI, Croom et al. 2012;
MaNGA, Bundy et al. 2015) have shown the potential of this
kind of data to deliver important insights on this and other key
questions about the formation and evolution of galaxies at low
redshifts. Recent articles have proved the power of this tool to
properly map the spatially resolved properties of galaxies by us-
ing the full two-dimensional (2D) information spaxel by spaxel
that is provided by these surveys (e.g. Papaderos et al. 2013;
Singh et al. 2013; Davies et al. 2014; Galbany et al. 2014;
Barrera-Ballesteros et al. 2015; Belfiore et al. 2015; Gomes et al.
2015; Ho et al. 2015; Holmes et al. 2015; Li et al. 2015; Martín-
Navarro et al. 2015; Wilkinson et al. 2015).

In this work, we make use of full 2D information in analysing
CALIFA data spaxel by spaxel with the goal of characterising the
radial gas abundance profile in a sample of face-on spiral galax-
ies. We not only focus on the broadly analysed gradient of these
profiles, but also study other features that deviate from the sim-
ple negative trend, such as inner drops and outer flattenings. We
also aim to compare the results with those obtained following the
classical procedure of analysing H ii regions. A spaxel-by-spaxel
study allows us to improve the statistics with respect to previous
studies on the topic and also offers the possibility of properly
estimating the oxygen distribution across the entire discs over a
distance of up to 3-4 disc effective radii. A proper 2D study of the
oxygen abundance distribution that analyses possible azimuthal
variations will be presented in a forthcoming work.

The structure of the paper is as follows. Section 2 provides
a description of the sample and data we use in this study. Sec-
tion 3 describes the analysis required to extract the spaxel-wise
information. We explain the procedure to detect the H ii regions
analysed for comparison (Sect. 3.3) and derive the correspond-
ing oxygen abundance values using both methods (Sect. 3.4).
Our results are shown in Sect. 4, where we study the oxygen
abundance slope distribution (Sect. 4.1), its dependence on dif-
ferent properties of the galaxies (Sect. 4.2), and the existence of
a common abundance profile (Sect. 4.3). Finally, the discussion
of the results and the main conclusions are given in Sect. 5.

2. Data and galaxy sample

The analysed data were selected from the 939 galaxies that com-
prise the CALIFA mother sample (Sánchez et al. 2012a). These
galaxies were observed using the Potsdam Multi Aperture Spec-
trograph (PMAS; Roth et al. 2005) at the 3.5m telescope of the
Calar Alto observatory with a configuration called PPAK (Kelz
et al. 2006). This mode consists of 382 fibres of 2.7 arcsec diam-
eter each, 331 of them (the science fibres) covering an hexago-
nal field of view (FoV) of 74′′x 64′′. To achieve a filling factor
of 100% along the full FoV and increase the spatial resolution,
a dithering scheme of three pointings was adopted. Two differ-
ent setups were chosen for the observations: V500, with a nom-
inal resolution of λ/∆λ ∼ 850 at 5000 Å (FWHM ∼ 6 Å) and
a wavelength range from 3745 to 7500 Å, and V1200, with a
better spectral resolution of λ/∆λ ∼ 1650 at 4500 Å (FWHM
∼ 2.7 Å) and ranging from 3650 to 4840 Å. The data analysed
here were calibrated with version 1.5 of the reduction pipeline.
More detailed information about the CALIFA sample, obser-
vational strategy and data reduction can be found in Sánchez

et al. (2012a), Husemann et al. (2013), and García-Benito et al.
(2015).

After following the standard steps for fibre-based IFS data
reduction, the pipeline provides a regular-grid datacube, with x
and y coordinates indicating the right ascension and declination
of the target and z being the step in wavelength for all galaxies in
the sample. An inverse-distance weighted image reconstruction
scheme was performed as interpolation method to reconstruct
the datacube. As a result, we have individual spectra for each
sampled spaxel of 1′′ × 1′′ and a final spatial resolution for the
datacubes of FWHM ∼ 2.5 arcsec.

The subset of galaxies used in this work was selected by
adopting the following criteria:

(a) Spiral galaxies with morphological types between Sa and
Sm, including barred galaxies.

(b) Face-on galaxies, with i < 60◦, to avoid uncertainties in-
duced by inclination effects.

(c) Galaxies with no evident signatures of interaction or merging
(i.e. tails, bridges, rings, etc.).

(d) Galaxies with Hα detected along different galactocentric dis-
tances with a signal-to-noise ratio (S/N) for the spaxels above
4 on average.

The classification according to morphological type and into in-
teracting or non-interacting galaxy was based on the visual in-
spection carried out by Walcher et al. (2014, see details in the
article). After imposing these restrictions, the galaxy sample was
reduced to 204 galaxies. From these, we only analysed the 129
galaxies that have finally been observed by the CALIFA collab-
oration with the V500 setup.

Figure 1 shows the comparison of the distribution of mor-
phological types, absolute B-band magnitudes, and disc effective
radii between the spiral galaxies in the CALIFA mother sample
and the sample used in this study. There is a clear deficiency of
earlier (Sa-Sab) and later (Sc-Sdm) spirals; the sample is dom-
inated by intermediate galaxies. This may be due to the impo-
sition of ionised gas throughout the discs, which we have pri-
oritised to perform a detailed 2D study of the gas metallicity.
The distribution of galaxies according to their absolute mag-
nitude clearly shows an absence of faint galaxies, with values
above -18 mag. This fact is a consequence of a selection effect
in the definition of the CALIFA mother sample (Walcher et al.
2014). The CALIFA mother sample was created by applying a
size selection criterion defined by a minimum apparent isophotal
size. A size-limited sample like this favours inclined over face-
on sytems because the inclination increases the apparent isopho-
tal size (because the surface brightness increases). This effect
causes these inclined galaxies to dominate the low-luminosity
population of galaxies. Because we selected only face-on galax-
ies with i < 60◦, we automatically discarded all these faint galax-
ies. On the other hand, a correlation between the morphological
type of the galaxies and the mass (thus, with the luminosity, see
e.g. Roberts & Haynes 1994; González Delgado et al. 2015) has
been found, where later types present lower masses (and lumi-
nosities). This contributes to the deficiency of later spirals that is
found in the sample because of the lack of low-luminosity galax-
ies and the correlation between these two parameters. For the
distribution of galaxies according to their disc effective radius,
we finally obtained similar distributions for the CALIFA spiral
galaxies and our sample: the sample is dominated by galaxies
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Fig. 1. Distribution of morphological types (top left), absolute B-band magnitudes (top middle), and disc effective radii (top right) of the spiral
galaxies in the CALIFA mother sample (unfilled black histograms) and the galaxies selected in this work (filled blue histograms). The middle and
bottom panels show the normalised distributions separated according to the presence or absence of bars: barred galaxies (red histograms), unbarred
galaxies (green histograms) and not clearly identified galaxies (blue histograms). The dashed grey line and the red arrow mark the location of the
MW in each panel. The values for the absolute B-band magnitude (MB = −20.8 mag) and the disc effective radius (re = 3.6 kpc) are taken from
Karachentsev et al. (2004) and Bovy & Rix (2013, considering re ∼ 1.67rd) respectively.

with re between 4 and 10 kpc. Furthermore, there are no signif-
icant differences in the distribution when the galaxies are sepa-
rated into barred and non-barred galaxies, galaxies of all sizes
are present in both cases.

Figure 2 shows the distribution of our sample (filled dots)
and the total sample of CALIFA spiral galaxies (empty dots)
along the (B − V) vs MV colour-magnitude diagram. Our sample
covers the same range as the CALIFA spirals above MV ∼ −17

mag, excluding the faint galaxies below this limit for the reasons
explained above.

We note that with the limitations we mentioned, which are
linked to the criteria we adopted to define the sample, the se-
lected set of galaxies is well suitable to carry out the study pre-
sented here, that is, a detailed 2D study of the radial gas metal-
licity distribution in spiral galaxies.
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Fig. 2. Distribution of the spiral galaxies in the CALIFA mother sample
(empty small dots) and the galaxies selected in this work (filled large
dots) in the (B − V) vs MV colour-magnitude diagram.

3. Analysis

The main goal of this study is to characterise the radial abun-
dance profiles in the galaxy sample using the full 2D informa-
tion and compare it with the results obtained using only the H ii
regions. In this section we describe the procedure followed to
select the spaxels, analyse their individual spectra, and to derive
the corresponding oxygen abundance. We also explain how we
have detected the H ii regions used for comparison and the sub-
sequent analysis.

3.1. Measurement of the emission lines

In the spectrum of a galaxy (or a portion of it), the emission
lines are superimposed on the underlying stellar spectrum. To
accurately measure the emission line fluxes, the stellar contribu-
tion must be estimated and subtracted from the galaxy spectrum
to derive a pure gas spectrum (allowing for the contribution of
noise from the stellar populations) for each individual spaxel (or
H ii region).

Several tools have been developed to model the underlying
stellar population and decouple it from the emission lines (e.g.
Cappellari & Emsellem 2004; Cid Fernandes et al. 2005; Ocvirk
et al. 2006; Sarzi et al. 2006; Koleva et al. 2009; Sánchez et al.
2011). Most of them are based on the assumption that the star
formation history (SFH) of a galaxy can be approximated as a
sum of discrete star formation bursts and, therefore, that the stel-
lar spectrum can be considered as the result of the combination
of spectra of different simple stellar populations (SSP) with dif-
ferent ages and metallicities.

In this work, we made use of a fitting package named FIT3D1

to model both the continuum emission and the emission lines.
This tool uses an SSP template grid that comprises 156 indi-
vidual populations covering 39 stellar ages between 0.001 and
14.1 Gyr and four metallicities between 0.004 and 0.03. This
grid combines the Granada models from González Delgado et al.
(2005) for t < 63 Myr with those provided by the MILES project
(Vazdekis et al. 2010; Falcón-Barroso et al. 2011) for older ages
(following Cid Fernandes et al. 2013). This way, FIT3D fits

1 http://www.astroscu.unam.mx/~sfsanchez/FIT3D

each spectrum by a linear combination of the SSP templates that
are collected in the library after correcting for the appropriate
systemic velocity and velocity dispersion (including the instru-
mental dispersion, which dominates the total observed disper-
sion) and taking into account the effects of dust attenuation. We
adopted the Cardelli et al. (1989) law for the stellar dust extinc-
tion with RV = 3.1.

To measure the emission line fluxes and after the stellar
component is subtracted, FIT3D performs a multi-component
fitting using a single Gaussian function per emission line plus
a low-order polynomial function. When more than one emis-
sion line was fitted simultaneously (e.g. for doublets and triplets
like the [N ii] lines), the systemic velocity and velocity disper-
sion were forced to be equal to decrease the number of free
parameters and increase the accuracy of the deblending pro-
cess. The measured line fluxes include all lines required in de-
termining the gas metallicity using strong-line methods, that is,
Hα, Hβ, [O ii] λ3727, [O iii] λ4959, [O iii] λ5007, [N ii] λ6548,
[N ii] λ6584, [S ii] λ6717, and [S ii] λ6731. FIT3D provides the
intensity, equivalent width (EW), systemic velocity, and velocity
dispersion for each emission line. The statistical uncertainties in
the measurements were calculated by propagating the error asso-
ciated with the multi-component fitting and taking into account
the S/N at the spectral region.

As indicated above, FIT3D fits both the underlying stellar
population and the emission lines. In addition to the parame-
ters derived for the emission lines, the fitting algorithm there-
fore provides information related to the stellar population: the
luminosity-weighted ages and metallicities, the average dust at-
tenuation, the mass-weighted ages and metallicities, the average
mass-to-light ratio, and the individual weights of the multi-SSP
decomposition that in essence trace the SFH.

The entire procedure of fitting and subtracting the underlying
stellar population and measuring the emission lines using FIT3D
is described in more detail in Sánchez et al. (2011) and Sánchez
et al. (2015b).

We note that all these parameters (both stellar and gas) were
derived spaxel by spaxel for each individual spectrum of the dat-
acubes, providing the sets of 2D maps that are the base of our
analysis.

3.2. Extracting information spaxel by spaxel

As a result of the FIT3D fitting process, we obtained the set of
2D intensity maps for the emission lines that are required to de-
termine the gas metallicity. To guarantee realistic measurements
of the emission line fluxes for each spaxel, we adopted a lower
limit below which we considered that the fluxes are of the same
order as the continuum error. In this way, we discarded the spax-
els whose emission line fluxes employed in the determination of
the oxygen abundance are lower than 1σ over the continuum
level. From all the spaxels with flux values above this limit, we
now selected those that are associated with star formation (SF).

The intensities of strong lines were broadly used to discern
between different types of emission according to their main ex-
citation source (i.e. starburst or AGN) throughout the so-called
diagnostic diagrams (e.g. Baldwin et al. 1981; Veilleux & Os-
terbrock 1987). In most cases these diagrams are very useful in
distinguishing between strong ionisation sources, such as classi-
cal H ii /SF regions and powerful AGNs. However, they are less
accurate in distinguishing between low-ionisation sources, such
as weak AGNs, shocks, and/or post-AGBs stars (Stasińska et al.
2008; Cid Fernandes et al. 2011). Alternative methods based on
a combination of the classical line ratios and additional informa-
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tion regarding the underlying stellar population have been pro-
posed, for instance, the so-called WHAN diagram (Cid Fernan-
des et al. 2011). This diagram uses the EW(Hα) to take into ac-
count weak AGNs and ‘retired’ galaxies, that is, galaxies that
have stopped forming stars and are ionised by hot low-mass
evolved stars.

The most commonly used diagnostic diagram was proposed
by Baldwin et al. (1981, hereafter BPT diagram). This diagram
makes use of the [N ii] λ6584/Hα and [O iii] λ5007/Hβ line ra-
tios, which are less affected by dust attenuation because of their
proximity in wavelength space. Different demarcation lines for
BPT diagram have been proposed to distinguish between SF re-
gions and AGNs. The most popular are the Kauffmann et al.
(2003) and Kewley et al. (2001) curves. Pure H ii /SF regions are
considered to be below the Kauffmann et al. (2003) curve and
AGNs above the Kewley et al. (2001) curve. The area between
the two curves is broadly and erroneously assigned to a mixture
of different ionisation sources, since pure SF regions can also be
found here.

These two demarcation lines have a different origin. The
Kewley et al. (2001) curve was derived theoretically using pho-
toionisation models and corresponds to the maximum envelope
for ionisation produced by OB stars. The Kauffmann et al. (2003)
curve has an empirical origin, based on the analysis of the emis-
sion lines for the integrated spectra of SDSS galaxies. It de-
scribes the envelope for classical H ii /SF regions well that are
found in the discs of late-type spiral galaxies. However, it ex-
cludes certain kinds of SF regions that have already been found
above this demarcation line (Kennicutt et al. 1989; Ho et al. 1997
and, more recently, Sánchez et al. 2014). Selecting H ii /SF re-
gions based on the Kauffmann et al. (2003) curve may there-
fore bias our sample towards classical disc regions. Moreover,
it does not guarantee that other sources of non-stellar ionisation
are excluded that might populate this area, such as weak AGNs,
shocks, and/or post-AGBs stars. We adopted the Kewley et al.
(2001) curve to exclude strong AGNs and an EW criterion to ex-
clude weak AGNs and ‘retired’ emission (Cid Fernandes et al.
2011). However, we were more restrictive in the EW range than
Cid Fernandes et al. (2011) and established the limit in 6 Å to
also guarantee a better S/N of the emission lines for all spaxels.
For a detailed analysis of the weak emission procedure spaxel by
spaxel using CALIFA data, see Gomes et al. (2015).

In addition to the light from the ionised SF regions, there
is a background of diffuse nebular emission that extends over
the whole disc of the galaxies and can blur contribution of the
SF regions, which is the subject of our study. However, most
of the diffuse ionised emission has been excluded by the 1σ
limit imposed to the flux of the selected spaxels and the EW
criterion, since this emission is dominated by the stellar contin-
uum. For a comparison of the location in the BPT diagram for
low-ionisation emission sources see, for instance, Kehrig et al.
(2012); Papaderos et al. (2013), and Gomes et al. (2015).

The top left panel of Fig. 3 shows the [O iii] λ5007/Hβ vs.
[N ii] λ6584/Hα diagnostic diagram for the spaxels in all 129
galaxies of our sample above the considered flux limit and with
EW(Hα)> 6 Å. The solid and dashed lines represent the Kewley
et al. (2001) and Kauffmann et al. (2003) demarcation curves,
respectively. Some points dominated by SF ionisation might be
present above the Kewley et al. (2001) curve as a result of the
errors of the considered emission lines. They are, therefore, ex-
cluded from further analysis by our criteria for selecting spaxels
associated with SF activity. However, the spaxels that present

larger errors are those with a low S/N, and they do not affect our
conclusions significantly.

The top right panel of Fig. 3 shows the location of the
selected spaxels in a particular spiral galaxy of the sample,
NGC 0165, over-plotted to the Hα map. Blue dots correspond to
the spaxels classified as SF regions and red dots are those that lie
higher than the Kewley et al. (2001) curve and can therefore be
associated with AGNs. The figure shows that the selected spax-
els follow the Hα emission. The classification of red points as
ionised by AGNs in this galaxy as well as in other cases is clearly
false because of their distance to the galactic centres. This mis-
classification is most probably due to the errors in the considered
emission lines. As in the previous case, they could cause some
spaxels that are dominated by SF ionisation to lie higher than
the Kewley et al. (2001) curve in a similar way that errors could
produce the opposite effect with spaxels associated to AGNs. As
these spaxels represent only the 2% for the whole sample, in-
cluding them would not alter our results significantly, and thus
they were discarded from the further analysis. For this galaxy,
1 201 spaxels were associated with SF regions.

3.3. Detection and selection of H ii regions

We detected the H ii regions and extracted the corresponding
spectra using a semi-automatic procedure named HIIEXPLORER2.
The procedure is based on two assumptions: (a) H ii regions are
peaky and isolated structures with a strongly ionised gas emis-
sion, particularly Hα, that is significantly higher than the stellar
continuum emission and the average ionised gas emission across
the galaxy; (b) H ii regions have a typical physical size of about
one hundred or a few hundred parsecs (González Delgado &
Pérez 1997; Oey et al. 2003; Lopez et al. 2011), which corre-
sponds to a typical projected size of a few arcsec at the standard
distance of the galaxies in the sample.

A more detailed description of this algorithm can be found
in Sánchez et al. (2012b), with a few modifications presented in
Sánchez et al. (2015a). Basically, the main steps of the process
are as follows: (i) First we create a narrow-band image of 120 Å
width centred on Hα shifted at the redshift of each galaxy. (ii)
This image is used as an input for HIIEXPLORER. The algorithm
detects the brightest pixel in the map and then adds all the ad-
jacent pixels up to a distance of 3.5” if their fluxes exceed 10%
of the peak intensity. After the first region is detected and sep-
arated, the corresponding area is masked from the input image
and the procedure is repeated until no peak with a flux exceed-
ing the median Hα emission flux of the galaxy is found. The
result is a segmentation FITS file describing the pixels associ-
ated with each detected H ii region. Finally, (iii) the integrated
spectrum corresponding to each segmented region is extracted
from the original datacube, and the corresponding position table
of the detected area is provided.

After we extracted the spectra for the detected clumpy
ionised regions, we applied the same analysis described in
Sects. 3.1 and 3.2: each extracted spectrum was decontaminated
by the underlying stellar population using FIT3D, and the emis-
sion line fluxes were measured by fitting each line with a Gaus-
sian function. These line ratios were used to distinguish between
the detected ionised regions, the ones associated with star for-
mation. In a similar way as for individual spaxel spectra, using
the BPT diagram H ii /SF regions were considered to be under
the Kewley et al. (2001) curve and present an EW(Hα)> 6Å.

2 http://www.astroscu.unam.mx/~sfsanchez/HII_explorer
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Fig. 3. Left panels: Normalised density distribution of the spaxels with EW(Hα) above 6 Å (top) and of the detected H ii /SF regions (bottom) along
the BPT diagram. The solid and dashed lines in both panels represent the Kewley et al. (2001) and Kauffmann et al. (2003) demarcation curves. SF
regions are considered to be below the Kewley et al. (2001) curve. Right panels: Location of the spaxels classified as SF regions (blue dots) and
AGNs (red dots) according to the BPT diagram superimposed on the IFS-based Hα map derived for one galaxy of the sample, NGC 0165 (top)
and a Hα map in units of (log10) 10−16 erg s−1 cm−2 arcsec−1 for NGC 0165, together with the detected H ii regions shown as black segmented
contours (bottom).

Figure 3 (bottom left) shows the [O iii] λ5007/Hβ vs.
[N ii] λ6584/Hα diagnostic diagram for the H ii /SF regions. The
solid and dashed lines represent the Kewley et al. (2001) and
Kauffmann et al. (2003) demarcation curves, respectively.

Figure 3 (bottom right) shows an example of an Hα map for
one spiral galaxy of the sample, NGC 0165, where the location
of the H ii regions is superimposed as black segmented contours.
For this galaxy we detected 72 H ii regions.

3.4. Measurement of the oxygen abundances

A direct procedure to measure abundances from observed
spectra requires using temperature-sensitive line ratios such
as [O iii] λλ4959, 5007/[O iii] λ4363. This is known as the
Te−method (Peimbert & Costero 1969; Stasińska 1978; Pagel
et al. 1992; Vilchez & Esteban 1996; Izotov et al. 2006). How-
ever, some of these auroral or nebular lines are very faint, and
they become even fainter as the metallicity increases (when
a more efficient cooling mechanism begins to act through the
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metal lines, which produces a decrease in the temperature), and
eventually, they are too weak to be detected. Furthermore, as a
result of the weakness of the involved lines, the Te−method can
only be applied to nearby and low-metal objects for which very
high S/N spectra are observable.

It is therefore necessary to look for indirect methods that al-
low us to estimate the chemical abundances. To do this, abun-
dance indicators based on the relations between metallicity and
the intensity of strong and more readily observable lines have
been developed. These methods have first been proposed by Al-
loin et al. (1979) and Pagel et al. (1979). Since then, several
calibrators based on direct estimations of oxygen abundances
(Zaritsky et al. 1994; Pilyugin 2000; Denicoló et al. 2002; Pettini
& Pagel 2004; Pérez-Montero & Díaz 2005; Pilyugin & Thuan
2005; Pilyugin et al. 2010; Marino et al. 2013) and photoion-
isation models (Dopita & Evans 1986; McGaugh 1991; Kew-
ley & Dopita 2002; Kobulnicky & Kewley 2004; Dopita et al.
2006, 2013; Pérez-Montero 2014) have been proposed and are
widely used todays. For a revision of the different methods, their
strengths and their caveats, see López-Sánchez et al. (2012).

In this work we aim to derive the spatial distribution of
the oxygen abundance across the considered galaxies. For this
purpose, we used the emission line intensities derived spaxel
by spaxel for the sample of H ii regions described before. We
adopted the empirical calibrator based on the O3N2 index that
was first introduced by Alloin et al. (1979):

O3N2 = log
(

[O iii]λ5007
Hβ

×
Hα

[N ii]λ6584

)
. (1)

This index (i) is only weakly affected by dust attenu-
ation because of the close distance in wavelength between
the lines in both ratios, (ii) presents a monotonic depen-
dence on the abundance and (iii) uses emission lines cov-
ered by CALIFA wavelength range. One of the most pop-
ular calibrations for this index has been proposed by Pet-
tini & Pagel (2004, hereafter PP04). However, this indica-
tor lacks observational points at the high-metallicity regime
(12 + log (O/H) > 8.2) and instead uses predictions from pho-
toionisation models. Therefore, we here adopted the improved
calibration proposed by Marino et al. (2013, hereafter M13),
where 12 + log (O/H) = 8.533 − 0.214 × O3N2. This calibra-
tion uses Te-based abundances of ∼ 600 H ii regions from the
literature together with new measurements from the CALIFA
survey, providing the most accurate calibration to date for this
index. The derived abundances have a calibration error of ±0.08
dex, and the typical errors associated with the pure propagation
of the errors in the measured emission lines are about 0.05 dex.

3.5. Oxygen abundance gradients

To derive the radial distribution of the oxygen abundance for
each galaxy, we determined the position angle and ellipticity of
the disc to obtain the deprojected galactocentric distances of the
selected spaxels. These morphological parameters were derived
by performing a growth curve analysis (Sánchez et al. 2014,
hereafter S14). The inclination was deduced by also assuming
an intrinsic ellipticity for galaxies of q = 0.13 (Giovanelli et al.
1994):

cos2 i =
(1 − ε)2 − q2

1 − q2 , (2)

where ε is the ellipticity provided by the analysis and given by
ε = 1 − b/a, with a and b being the semi-major and semi-minor

Fig. 4. Radial density distribution of the spaxels in the oxygen
abundance-galactocentric distance space for the same galaxy as in Fig. 3
(right panels). The radial distances are deprojected and normalised to
the disc effective radius. The diamonds represent the mean oxygen
abundance values, with the error bars representing the corresponding
standard deviations, for bins of 0.25 re and the red solid line the error-
weighted linear fit derived for values within the range between 0.5 and
2.0 re (yellow diamonds). The parameters of the fit are shown in the up-
per right corner of the panels, including the zero point (a), the slope (b)
and the correlation coefficient (r). The violet dots correspond to the oxy-
gen abundances derived for the individual H ii regions, and the dashed
black line is the linear regression for these points.

axes. We preferred not to correct for the inclination effects in
galaxies with an inclination below 35◦ because the uncertain-
ties in the derived correction exceed the very small effect on the
spatial distribution of the spaxels, even more when an intrinsic
ellipticity is also considered.

We then derived the galactocentric distance for each spaxel,
which was later normalised to the disc effective radius, as sug-
gested in Sánchez et al. (2012b, 2013). This parameter was
derived from the disc scale-length based on an analysis of
the azimuthal surface brightness profile (SBP), explained in
Appendix A of S14. Other normalisation length-scales were
used for better comparison with other studies, such as the r25
radius, which is defined as the radius corresponding to a surface
brightness level of 25 mag/arcsec2 in the SDSS r-band3, and the
physical scale of the galaxy, that is, the distances in kpc.

Finally, we obtained the radial distribution of the oxygen
abundance for each galaxy. To characterise this profile, we per-
formed an error-weighted linear fit to the derived oxygen abun-
dance mean values for radial bins of 0.25 re within the range
between 0.5 and 2.0 re. The radial binning was made to min-
imise possible azimuthal differences in the oxygen abundance
distribution, and the size of the bins was chosen to match the
seeing value. We excluded the innermost region (r/re < 0.5),
which sometimes presents a nearly flat distribution or even a
drop towards the centre (e.g. Belley & Roy 1992; Rosales-Ortega
et al. 2011; Sánchez et al. 2012b, 2014). We also omitted the
outer region (r/re > 2.0), which it is found to have a flattening
in the abundance gradient for galaxies covering regions beyond
r25 (e.g. Martin & Roy 1995; Vilchez & Esteban 1996; Roy &
Walsh 1997; van Zee et al. 1998; Bresolin et al. 2009; Rosales-

3 Using the seventh data release (DR7, Abazajian et al. 2009).
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Ortega et al. 2011; Bresolin et al. 2012; Marino et al. 2012;
López-Sánchez et al. 2015). The edges of the range were ob-
tained based on a visual inspection of each individual galaxy,
discarding the regions where we observed the mentioned fea-
tures. The fitted interval has changed with respect to S14, simply
because of a better space coverage that allowed us to refine the
radial limits. The linear fit was weighted using the standard devi-
ations of (mean) values within each bin and considered only the
bins that contained at least nine values of the oxygen abundance.
This minimum number of values required for each bin was deter-
mined to ensure a precision in the derived mean that is ten times
better than the dynamic range of abundance values covered in
the fit, taking into account the dispersion in the measurements.

It is important to note that uncertainties in the determination
of the deprojected galactocentric distances can significantly af-
fect the derivation of the abundance gradients. Moreover, as the
radial galactocentric distances are normalised to the disc effec-
tive radius, the uncertainties in the determination of the re can
also contribute to the scatter obtained on the final oxygen gradi-
ents. On one hand, performing Monte Carlo simulations, we ob-
tained that an error of 5◦ in the inclination and PA of the galaxies
can produce a dispersion in the gradient distribution of at most
0.05 dex/re (0.02 dex/re on average). On the other hand, compar-
ing different methods to derive the re (as described in S14) and
taking into account both the nominal errors and the differences
among them, the overall contribution to the dispersion in the gra-
dient distribution coming from the derivation of the re is at most
0.04 dex/re (0.01 dex/re on average). All these uncertainties are
well accounted for by our error estimation of the gradient (0.05
dex/re, see Sect. 4.1).

In Fig. 4 we present an example of the abundance gradi-
ent for the same galaxy shown in the right panels of Fig. 3,
NGC 0165, using both the spaxel-wise information (colour map)
and the individual H ii regions (violet dots). The diamonds rep-
resent the mean oxygen abundance values of the radial bins,
with the error bars indicating the corresponding standard devi-
ations. The red solid line is the error-weighted linear fit derived
for values within the range between 0.5 and 2.0 re (yellow di-
amonds), and the dashed black line is the linear regression for
the individual H ii regions. This figure illustrates the procedure
explained before to derive the oxygen abundance gradient. From
the original 129 galaxies, we were able to fit 122 lines, and the
remaining galaxies were discarded from further analysis because
of the low number of spaxels associated with SF regions that are
needed to carry out the linear fit. This final sample provides more
than 185 000 oxygen abundance values, ∼ 8 230 of them beyond
two disc effective radii, and with more than 7 100 H ii regions to
compare with, ∼ 605 beyond 2 re.

4. Results

With the procedure explained in the previous section we ob-
tained the oxygen abundance gradient for the 122 galaxies in
our sample. We describe the main properties of these abundance
profiles below.

4.1. Abundance gradient distribution

Figure 5 shows the distribution of the correlation coefficient,
zero-point, and slope of the abundance gradients for the final
sample using both the spaxel-wise information (red dashed his-
togram) and the individual H ii regions (blue filled histogram).

We focus first on the spaxel-wise analysis. For almost all
galaxies the correlation coefficient is larger than 0.75. If we per-

form a Student’s t-test to check the significance of the correla-
tion, we obtain that for ∼ 80% of the galaxies the oxygen abun-
dance and the radial distance (normalised to the disc effective
radius) are significantly correlated to the 95% level (0.05).

The distribution of zero points ranges between 8.4 and 8.7,
reflecting the mass-range covered by the sample as a conse-
quence of the well-knownM−Z relation (e.g. Tremonti et al.
2004; Sánchez et al. 2013). The presence of a peak in the distri-
bution and a small standard deviation is the result of a bias in the
selection of the sample, explained in Sect. 2, which is due to a
lack of low-luminosity galaxies.

Finally, the distribution of slopes presents a characteristic
value of αO/H = −0.07 dex/re with a standard deviation of
σ ∼ 0.05 dex/re. We performed a Lilliefors test (Lilliefors 1967)
to assess the compatibility of the distribution with a Gaussian,
obtaining a test statistics of 0.07 and a P-value of 0.62, showing
that the distribution of slopes has a clear peak and is remark-
ably symmetric. We ran a Monte Carlo simulation to estimate
the contribution of the errors in the derived slopes to the σ of the
distribution, obtaining that these errors can only explain 49% of
the width distribution. We may have underestimated the errors
involved in the determination of the slopes, particularly the ef-
fect of the inclination. Otherwise, the remaining σ must have
another origin that we investigate in more detail in Sect. 4.2.

The analysis for the individual H ii regions leads us to very
similar results. In this case, we have a wider distribution for the
correlation coefficients, but we have to note that the number of
points involved in the linear fit is larger using all the individ-
ual H ii regions, since we did not apply any kind of radial bin-
ning to the data. The correlation coefficient is larger than 0.32 for
∼ 60% of the galaxies, which corresponds to a significance level
of 98% (0.02). The distribution of zero points covers almost the
same range as for the spaxels (between 8.3 and 8.8), allowing us
to draw the same conclusions. Finally, the distribution of slopes
presents a characteristic value of αO/H = −0.05 dex/re with a
standard deviation of σ ∼ 0.06 dex/re. The Lilliefors test gives a
test statistic of 0.08 and a P-value of 0.28, very similar to the one
described for the spaxel-wise analysis. The Monte Carlo simu-
lation yields a contribution of 44% of the errors in the derived
slopes to the distribution width, again insufficient to explain the
σ of the distribution.

If we use different scales to normalise the radial distances
like r25 and the physical scale of the galaxy (radius in kpc) for
both the spaxel-wise and the individual H ii region analysis, we
obtain in all cases a similar and narrow distribution, although for
the physical scale the distribution is clearly asymmetric, with a
tail towards large slopes. We note that our range of masses is
narrow, and consequently, so is the range of re and r25, which
in turn causes the distribution when normalising to the physical
scale narrow as well, in contrast to what we should obtain for a
wider range of masses. The different slope values are given in
Table 1.

4.1.1. Comparison with other calibrators

It is beyond the purpose of this work to make a detailed com-
parison of the oxygen abundance gradients derived using differ-
ent empirical calibrators. However, we compare our results with
those provided with other methods by deriving the oxygen radial
distributions using some of the most commonly used empirical
calibrators: (i) the technique proposed by PP04 for the O3N2 in-
dex, (ii) the Pilyugin et al. (2010, hereafter P10) calibration for
the ONS index, (iii) and the Dopita et al. (2013, hereafter D13)
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Fig. 5. Distribution of correlation coefficients (left panel), zero points (middle panel), and slopes (right panel) of the linear fits derived for the
oxygen abundance gradients of the final sample using spaxel-wise information (dashed red bars) and the individual H ii regions (filled blue bars).
For both the zero point and slope distributions the lines represent the Gaussian distribution of the data (solid line for spaxels, dashed line for
individual H ii regions), assuming the mean and standard-deviation of the distribution of each analysed parameter and sampled with the same bins.

Table 1. Oxygen abundance gradient slopes derived using different calibrators and distance normalisations.

Calibrator αO/H − spaxels αO/H −H ii regions

[dex/re] [dex/r25] [dex/kpc] [dex/re] [dex/r25] [dex/kpc]

O3N2 [M13] −0.07 ± 0.05 −0.08 ± 0.06 −0.009 ± 0.008 −0.05 ± 0.06 −0.06 ± 0.06 −0.008 ± 0.010

O3N2 [PP04] −0.11 ± 0.07 −0.12 ± 0.09 −0.014 ± 0.012 −0.08 ± 0.09 −0.09 ± 0.09 −0.011 ± 0.014

ONS [P10] −0.06 ± 0.06 −0.08 ± 0.07 −0.008 ± 0.009 −0.06 ± 0.09 −0.08 ± 0.11 −0.008 ± 0.012

pyqz [D13] −0.14 ± 0.09 −0.15 ± 0.10 −0.019 ± 0.014 −0.11 ± 0.09 −0.13 ± 0.11 −0.015 ± 0.015

calibration based on the MAPPINGS IV code developed by the
authors.

The PP04 calibration for the O3N2 index, as already men-
tioned in Sect. 3.4, is one of the most popular calibrations
used for this index and is defined as 12 + log (O/H) = 8.73 −
0.32 × O3N2. This calibration is not valid in the low-metallicity
regime (12 + log (O/H) < 8), but as we do not reach this
limit, this effect will not affect our results. The P10 ONS cal-
ibration makes uses of the N2/R2 and S 2/R2 ratios (defined
as R2 = [O ii] (λ3727 + λ3729), N2 = [N ii] (λ6548 + λ6584),
S 2 = [S ii] (λ6717 + λ6731)) as temperature and metallicity in-
dexes and is valid over the whole range of explored metallicities.
The derived relations to determine the oxygen abundances using
this calibration are given by P10. Finally, the D13 calibration is
based on a grid of photoionisation models covering a wide range
of abundance and ionisation parameters typical of H ii regions in
galaxies. This calibration can be used through a Python module
implemented by the authors, known as pyqz, which is publicly
available4.

Table 1 shows a comparison among the oxygen abundance
slopes derived using the different calibrators and the different
normalisations for the radial distance described before. In this
table we present the values using both the spaxels and the indi-
vidual H ii regions.

4 http://dx.doi.org/10.4225/13/516366F6F24ED

Fig. 6. Comparison of the oxygen abundance distribution derived using
the calibration proposed by M13 for the O3N2 index with the distribu-
tion derived using the P10 calibration for the ONS index (left panel)
and the calibration based on pyqz code (D13, right panel). The black
contours show the density distribution of the SF spaxels, the outermost
one including 80% of the total number of spaxels and decreasing 20%
in each consecutive contour. The black dashed lines indicate the 1:1
relation between the represented calibrators.

We also illustrate this comparison in Fig. 6. The left panel
represents the distribution of oxygen abundances derived using
the M13 calibration for the O3N2 index vs the P10 calibration
for the ONS index. In the right panel we show the same distribu-
tion of the M13 calibration, but this time vs the D13 calibration
based on the pyqz code. Both panels show a tight correlation

Article number, page 10 of 21

http://dx.doi.org/10.4225/13/516366F6F24ED


L. Sánchez-Menguiano et al.: Shape of the oxygen abundance profiles in CALIFA face-on spiral galaxies

between the compared calibrators. This allows us to conclude
that our qualitative results are not contingent upon the choice
of the used calibrator, although the actual measured values for
the abundance gradients may change. Similar conclusions were
stated by Ho et al. (2015) for a different sample of galaxies.

For the sake of clarity, below we only show the results of this
article based on the use of the M13 calibrator. However, we have
reproduced the analysis using all the proposed calibrators, with
no significant differences between the obtained results.

4.2. Abundance gradients by galaxy types

After we derived the oxygen abundance gradient for all galaxies,
we analysed whether there was a dependence of the slope on
different properties of the galaxies. We focused this analysis on
three properties: the differences in the morphological type, the
effect of the bars, and the luminosity of the galaxies. We showed
in Sect. 4.1 that the oxygen abundance distribution obtained for
both the spaxels and H ii regions are equivalent and accordingly
lead to the same results, therefore we carried this analysis out for
the spaxel-wise information alone.

Figure 7 shows the slope distribution as a function of the
morphological type of the galaxy (left panel), the presence or ab-
sence of bars (middle panel), and the g-band absolute magnitude
of the galaxies (right panel). We also show the histograms for
each distribution, where N is the number of galaxies. The limits
used in the classification based on the luminosity of the galax-
ies were chosen to ensure a similar number of elements in each
bin (i.e. comparable from a statistical point of view). We tried
to follow a similar criterion in the separation by morphological
types, but the deficiency of Sa-Sab galaxies and the criterion of
not considering Sb as early type prevented us from obtaining a
comparable number of objects in each bin.

The slope distribution by morphological types seems to vary
in a way that the earlier spirals present flatter gradients than the
later type ones. The median values for the distributions together
with the standard deviations are

Sa − Sab : αO/H = −0.04 dex/re and σ = 0.04 dex/re (ngal = 17)
Sb − Sbc : αO/H = −0.07 dex/re and σ = 0.05 dex/re (ngal = 74)
Sc − Sm : αO/H = −0.07 dex/re and σ = 0.04 dex/re (ngal = 31).

We performed a two-sample Kolmogorov-Smirnov test (KS-test)
to check if the differences found between the distributions are
significant. The significance level of the KS-test is 5%, meaning
that values below this limit come from different distributions.
We derived a P-value of 7% for the distributions with the largest
differences (between early and late spirals), a P-value of 10%
for the test comparing the early and intermediate types, and a
P-value of 92% between intermediate and late ones. We also
performed an Anderson-Darling test (AD-test), which is more
suitable when the samples comprise only few objects, with a re-
sulting P-value of 8% for the early-late comparison, a P-value
of 16% for the test comparing the early and intermediate type,
and a P-value of 73% in the intermediate-late case. This clearly
shows that the observed differences are negligible.

For the distribution of slopes depending on the presence or
absence of bars we defined three different groups: galaxies with
no bar (A), galaxies that may have a bar, but where the bar is not
clearly visible (AB), and clearly barred galaxies (B). The results

are as follows:

A : αO/H = −0.06 dex/re and σ = 0.05 dex/re (ngal = 46)
AB : αO/H = −0.09 dex/re and σ = 0.06 dex/re (ngal = 23)
B : αO/H = −0.06 dex/re and σ = 0.04 dex/re (ngal = 53).

We found negligible differences for these distributions. This was
confirmed by the KS test, which gives a P-value of 52% for the
comparison of the A-AB distributions, a P-value of 50% for the
A-B distributions, and a P-value of 10% for the AB-B distribu-
tions (from the AD-tests we obtain P-values of 39%, 27% and
5% for each bin, respectively).

Finally, to analyse the distribution of slopes depending on
the luminosity of the galaxies, we divided the sample again
into three groups: luminous (L, Mg−SDSS < −21.25 mag), in-
termediate (I, −21.25 < Mg−SDSS < −20.5 mag), and faint (F,
Mg−SDSS > −20.5 mag) galaxies. We obtained these results:

L : αO/H = −0.06 dex/re and σ = 0.05 dex/re (ngal = 49)
I : αO/H = −0.09 dex/re and σ = 0.05 dex/re (ngal = 37)
F : αO/H = −0.07 dex/re and σ = 0.05 dex/re (ngal = 36).

The statistical tests yield a P-value of 13% for the KS-test in the
case with the largest differences, that is, when comparing lumi-
nous and intermediate galaxies. The remaining KS-tests return a
P-value of 67% for the comparison between luminous and faint
galaxies and a P-value of 72% when analysing the intermediate
and faint distributions (a P-value of 19%, 50%, and 52%, respec-
tively, for the AD-tests).

Similar results for all these separations are found when using
any scale-length normalisation for the radial distance instead of
the disc effective radius, either the r25 radius or the physical scale
of the galaxy (i.e. the radial distance in kpc).

4.3. Common abundance gradient

The fact that the distribution of the oxygen abundance gradients
for all the galaxies in the sample is well fitted by a Gaussian
function suggests the existence of a characteristic value for the
slope, independent of other properties of the galaxies, as the mor-
phological type or the luminosity. This is true when normalising
the radial galactocentric distances to the disc effective radius and
limiting the fitted interval between 0.5 and 2.0 re. Below this
range (r/re < 0.5), a nearly flat distribution or even a drop to-
wards the centre is found for some galaxies of the sample. At
larger galactocentric distances (r/re > 2.0), a flattening can be
observed in the abundance gradient of most of the galaxies.

It is easier to illustrate this result if we represent the radial
distribution of the oxygen abundance for all the galaxies in the
same figure. This is shown in the left panel of Fig. 8. The black
contours represent the density distribution of the star-forming
spaxels. Although the radial gradient can be discerned through
the contour plot, the wide range of abundances blurs the result.
To clarify the origin of this widening, we colour-code each repre-
sented abundance according to the integrated stellar mass of the
host galaxy in log scale. For clarity, only the oxygen abundance
values with a contribution of at least 1% of the total number of
spaxels are plotted. Adopting this scheme, it is evident that the
abundances present a common radial gradient, but with an offset
depending on the mass, as expected from the M − Z relation
(and as discussed in Sect. 4.1). To remove this dependence on
the mass from the map, we rescaled the oxygen abundances of
each galaxy following the analytical form of theM−Z relation
(Tremonti et al. 2004) derived by Sánchez et al. (2013), applying
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Fig. 7. Distribution of the abundance slopes as a function of the morphological type of the galaxies (left panel), depending on the presence or
absence of bars (middle panel) and as a function of the g-band absolute magnitude of the galaxies (right panel). We also show the histograms
for each distribution, where N is the number of galaxies and colours indicate the different classification types: (i) early spirals, Sa-Sab (red);
intermediate spirals, Sb-Sbc (green); late spirals, Sc-Sm (blue) for the left panel. (ii) Clearly unbarred galaxies (red); clearly barred (blue);
an intermediate stage (green) for the middle panel. (iii) Luminous galaxies, Mg−SDSS < −21.25 mag (red); intermediate galaxies, −21.25 <
Mg−SDSS < −20.5 mag (green); faint galaxies, Mg−SDSS > −20.5 mag (blue) for the right panel. Black diamonds represent the median values for the
distributions, together with the standard deviation shown as error bars.

an offset according to the integrated stellar mass of the galaxy
and normalising to the average value for the whole sample of
∼ 8.5. The outcome is shown in the right panel of Fig. 8, where
the common abundance gradient presented by all galaxies in the
sample can be clearly seen. The abundance distribution is rep-
resented again as a density map, both with a colour-code image
(normalised to one) and a contour map. The diamonds repre-
sent the mean oxygen abundance values, with the error bars in-
dicating the corresponding standard deviations, for bins of 0.25
re. An error-weighted linear regression (solid black line) to the
mean values restricted to the spatial range between 0.5 and 2.0
re (yellow diamonds) derives a slope of αO/H = − 0.075 dex/re
and σ = 0.016 dex/re, totally compatible with the characteristic
slope of αO/H = − 0.07 ± 0.05 dex/re derived in Sect. 4.1 for the
individual galaxies assuming a Gaussian distribution (dashed-
white line).

This characteristic slope is independent of the integrated stel-
lar mass of the galaxies. Figure 9 shows the mean radial pro-
files of the oxygen abundance for our sample of galaxies split in
four mass bins with a similar number of elements (log (M/M�)
≤ 10.2, blue diamonds; 10.2 < log (M/M�) ≤ 10.5, red squares;
10.5 < log (M/M�) ≤ 10.75, yellow dots; log (M/M�) ≥ 10.75,
purple triangles). The derived gradients (computed between 0.5
and 2.0 re) of those four profiles are consistent with the charac-
teristic slope displayed by the entire sample.

All these gradients were derived up to two disc effective
radii. As we have already mentioned, previous studies have
found that galaxies present a flattening in the abundance when
covering regions beyond r25, observed both in the stellar popu-
lations (e.g. Yong et al. 2006; Carraro et al. 2007; Vlajić et al.
2009, 2011) and in the gas (e.g. Martin & Roy 1995; Vilchez &
Esteban 1996; Roy & Walsh 1997; van Zee et al. 1998; Bresolin
et al. 2009; Rosales-Ortega et al. 2011; Bresolin et al. 2012;
Marino et al. 2012; López-Sánchez et al. 2015; Marino et al.
2015). The right panel of Fig. 8 shows the appearance of the
mentioned flattening in the oxygen abundance distribution be-
yond ∼ two effective radii, with around 8 230 spaxels at these
outer regions. By inspecting the galaxies individually, we de-
tected this flattening in 57 of them, corresponding to 82% of the
galaxies with reliable oxygen abundance values at these large
galactocentric distances. The onset of the flattening is always
located around 2 re even if we separate the sample in different

bins according to the integrated stellar mass (see Fig. 9). In the
same figure we show that the abundance value of the flattening
depends on the mass of the galaxies because of the mentioned
M−Z relation.

In addition to this flattening in the outer parts, we found that
27 (22%) galaxies of the sample display some anomalies in their
oxygen abundance profiles in the inner parts, namely a nearly
flat distribution (8 galaxies, 6.5%) or even a drop towards the
centre (15 galaxies, 15.5%). This feature has also been found in
previous works (e.g. Belley & Roy 1992; Rosales-Ortega et al.
2011; Sánchez et al. 2012b, 2014). The presence of this feature is
not visible when representing the radial distribution of the oxy-
gen abundance for all the galaxies in our sample (Fig. 8), but
it does appear when separating the sample into different stellar
mass bins (Fig. 9), only in the case of the more massive galax-
ies. While the lowest stellar mass galaxies do not display any
sign of this feature, this drop is progressively more evident with
increasing galaxy mass.

5. Discussion and conclusions

At the beginning of this article we have pointed out the im-
portance of studying the chemical abundance to understand the
evolution of galaxies. In particular, observational studies of the
spatial distribution of chemical abundances and its cosmological
evolution allow us to set strong constraints for chemical evolu-
tion models that try to explain the formation processes of disc
galaxies (Koeppen 1994; Edmunds & Greenhow 1995; Tsuji-
moto et al. 1995; Mollá et al. 1997; Prantzos & Boissier 2000;
Chiappini et al. 2001; Mollá & Díaz 2005; Fu et al. 2009; Pilk-
ington et al. 2012; Mott et al. 2013).

The existence of a radial decrease in the chemical abun-
dances of nearby spiral galaxies has been well established by ob-
servations for decades (Searle 1971; Comte 1975; Smith 1975;
Peimbert 1979; Shaver et al. 1983). Since then, this gradient has
been confirmed by other works, restricted to individual galaxies
or to limited samples of galaxies (Martin & Roy 1992; Kenni-
cutt et al. 2003; Rosales-Ortega et al. 2011; Bresolin et al. 2012;
Marino et al. 2012; Patterson et al. 2012). With the advent of IFS
surveys like CALIFA, abundance studies using larger samples of
H ii regions have become feasible (Sánchez et al. 2012b, 2014),
with the same results as in previous studies.
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Fig. 8. Left: Radial distribution of the oxygen abundance derived using the O3N2 indicator and the calibration proposed by M13 for all the
galaxies in our sample. The black contours show the density distribution of the star-forming spaxels, the outermost one including 95% of the total
number of spaxels and decreasing 20% in each consecutive contour. The colour bar displays the average stellar mass of each galaxy (in log scale)
corresponding to each abundance and radial distance. The average error of the derived oxygen abundances is indicated as an error bar located at
the top right side of the panel. For clarity, only the oxygen abundance values with a contribution of at least 1% of the total number of spaxels are
plotted. Right: Radial density distribution of the oxygen abundance after rescaling the oxygen abundances of each galaxy following theM−Z
relation derived in Sánchez et al. (2013). As in the left panel, the outermost contour encircles 95% of the total number of spaxels, decreasing
20% in each consecutive contour. The diamonds represent the mean oxygen abundance values, with the error bars indicating the corresponding
standard deviations, for bins of 0.25 re. The solid-black line represents the error-weighted linear fit derived for those mean values within the range
between 0.5 and 2.0 re (yellow diamonds), and the dashed white line represents the linear relation corresponding to the characteristic values of the
zero-points and slopes derived in Sect. 4.1 for the individual galaxies assuming a Gaussian distribution for both parameters.

In this work we went a step further and analysed for the first
time the oxygen abundance distribution for a large sample of
galaxies spaxel by spaxel, taking advantage of the full 2D in-
formation provided by the CALIFA survey, which improves the
statistics. This final sample provides more than 185 000 oxy-
gen abundance values and more than 7 100 H ii regions with
which to compare our results. The analysis using the H ii regions
was previously performed by S14 with a different sample of
galaxies that were also extracted from the CALIFA mother sam-
ple. With spaxel-by-spaxel analysis, we here took approximately
four times more line emitting spaxels into account that are asso-
ciated with star formation regions than in the classical procedure
of detecting H ii regions. Our results are therefore mainly based
on an independent set of measurements, reinforcing and expand-
ing on the S14 results. A more complete 2D study of the oxygen
abundance distribution, analysing possible azimuthal variations,
will be the topic of a forthcoming work. In this paper, we focused
on the radial distribution of the oxygen abundances.

5.1. Common abundance gradient

Our results confirmed the radially decreasing abundance that was
described above and the existence of a characteristic gradient in
the oxygen abundance within 0.5-2.0 disc effective radii, inde-
pendent of other galaxy properties, which is similar to the result
reported previously by Sánchez et al. (2012b, 2014).

The distribution of the derived oxygen abundance gradients
is fully compatible with being Gaussian, presenting a character-
istic value for the slope of -0.07 dex/re and a standard deviation
of 0.05 dex/re. We estimated that at least a 50% of the dispersion

could be justified by the nominal errors in the derivation of the
slopes.

To assess a possible dependence of the gradient distribution
on different properties of the galaxies, we studied the abundance
gradient distribution of different subsamples according to the
morphological type, the effect of bars, and the luminosity of the
galaxies. Based on this analysis, we did not find statistically sig-
nificant differences (in terms of KS-tests) between them.

The results of this analysis contradict some previous studies,
which did find a relation between the slope in the gas abundance
gradient and some properties of the galaxies, such as the mor-
phology, the mass, or the presence of bars. The dependence of
the slope on the morphology of the galaxies is still an open ques-
tion. Early studies found a correlation between the abundance
slope and the morphological type of galaxies, with later types
showing steeper gradients (Vila-Costas & Edmunds 1992; Oey
& Kennicutt 1993). Other studies, however, suggested gradients
independent of galaxy type (Diaz 1989; Zaritsky et al. 1994),
when normalising to a physical scale of the disc (e.g. the r25 ra-
dius or the disc scale-length rd). The contradictory results might
be due to the small and heterogeneous samples and inconsistent
methods of measuring metallicity gradients.

For the effect of bars the conclusions likewise disagree. It is
well known that roughly 30 − 40% of the spiral galaxies have
a strong bar in optical wavelengths, 60% if we take into ac-
count weaker bars (e.g. Sellwood & Wilkinson 1993; Marinova
& Jogee 2007; Sheth et al. 2008; Aguerri et al. 2009; Masters
et al. 2011). Gas kinematic data show the presence of strong
non-circular motions in bars (Huntley 1978; Zurita et al. 2004;
Holmes et al. 2015), indicating that the bar constitutes a ma-
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Fig. 9. Mean oxygen abundance radial profiles derived considering
galaxies in four different bins according to their integrated stellar mass.
The limits of the bins were chosen to ensure a similar number of el-
ements in each bin: log (M/M�) ≤ 10.2, blue diamonds; 10.2 < log
(M/M�) ≤ 10.5, red squares; 10.5 < log (M/M�) ≤ 10.75, yellow dots;
log (M/M�) ≥ 10.75, purple triangles. The symbols represent the mean
oxygen abundance values, with the error bars indicating the correspond-
ing standard deviations, for bins of 0.25 re. Dashed vertical lines de-
limit the three different behaviours in the oxygen abundance profiles
(i.e. drop in the inner parts, common gradient between 0.5 and 2.0 re,
and the flattening in the outer parts).

jor non-axisymmetric component of the galaxy mass distribu-
tion (Sellwood & Wilkinson 1993). Bars have been proposed as
a key mechanism in the dynamical evolution of disc galaxies.
For instance, they are able to contribute to the redistribution of
matter in the galaxy by exchanging angular momentum with the
disc, inducing gas flows (Athanassoula 1992; Friedli 1998). This
radial movement can produce a mixing and homogenisation of
the gas, changing the abundance profiles in the disc and causing
a flattening in the gas abundance gradients (Friedli et al. 1994;
Friedli & Benz 1995; Portinari & Chiosi 2000; Cavichia et al.
2014).

Different studies have observed this flattening in the gas
abundance gradient of barred galaxies and found a correlation
between the abundance slope and the presence of a bar (Vila-
Costas & Edmunds 1992; Martin & Roy 1994; Zaritsky et al.
1994), independently of the adopted normalisation radius. How-
ever, recent works on either stellar or gas-phase metallicity have
not found evidence of such a correlation between them (Sánchez
et al. 2012b, 2014; Sánchez-Blázquez et al. 2014; Cheung et al.
2015). Our results support this absence of a correlation between
oxygen gradient and the presence of bars. However, stellar radial
migration due to bars may enlarge the effective radius of the disc
(Debattista et al. 2006), which could compensate for the effect
on the oxygen abundance values and produce the same gradient
as in absence of bars. We have checked this possibility and con-
firm that there is no such effect on the disc effective radius, as
can be inferred from the bottom right panel of Fig. 1. This fact,
together with the absence of correlation between oxygen gradi-
ent and the presence of bar, suggests that bars alone may not
have such a strong influence on the chemical evolution of disc
galaxies as predicted by simulations.

We have tried to describe the overall effect of the presence
of a bar on the abundance gradients (among other proporties of
galaxies), obtaining that bars alone may not affect the chemical
evolution of disc galaxies so strongly. However, the relative size
of the bar with respect to the disc might play an important role
on the derived gradients. To assess this possibility, we need to
properly measure the size of the bars, a task that is hampered by
the sometimes elusive nature of these structures. This parameter
will be determined as a result of the photometric analysis cur-
rently carried out by the CALIFA collaboration (Méndez-Abreu
et al., in prep.). Thus, we leave the analysis of this possible effect
for a future work.

Finally, no trends with the luminosity or mass of the galax-
ies have been found in previous studies when normalising to a
physical scale of the disc (Zaritsky et al. 1994; Garnett et al.
1997; Ho et al. 2015); this agrees with our results. We note that
several studies that found correlations with some properties of
the galaxies measured the abundance gradients in absolute scale
(i.e. kpc). When normalising the galactocentric distances to scale
lengths such r25, rd or re, the correlations sometimes disappear.
This can partially be understood as a size effect. If galaxies with
steeper metallicity gradients measured in dex kpc−1 are smaller
in their physical sizes (small r25), then the steep dex kpc−1 metal-
licity gradients would be compensated for when the galaxy sizes
are taken into account. Sánchez et al. (2012b, 2013) stated the
importance of defining the gradient normalised to the disc effec-
tive radius, since this parameter presents a clear correlation with
other properties of the galaxies, such as the absolute magnitude,
the mass, or the morphological type.

Both the fact that the distribution of the derived oxygen abun-
dance gradients is compatible with a Gaussian distribution and
this lack of correlations between the slope values and the anal-
ysed properties of galaxies support the existence of a charac-
teristic value for the slope that is common to all type of spiral
galaxies (interacting galaxies were not considered in the study
and are not included in this statement).

Several works have detected the mentioned gradient in the
MW (e.g. Shaver et al. 1983; Deharveng et al. 2000; Pilyugin
et al. 2003; Esteban et al. 2005; Quireza et al. 2006; Rudolph
et al. 2006; Balser et al. 2011), deriving values for the slope
between −0.04 and −0.06 dex/kpc. If we express the gradient
in dex/re to easily compare with our results, and considering a
value of the disc effective radius for our Galaxy of re = 3.6
kpc (Bovy & Rix 2013), we obtain a slope between −0.14 and
−0.22 dex/re, which is slightly larger than the mean value of our
slope distribution (−0.07 dex/re, see Table 1). However, deriv-
ing the abundance gradient for the MW is not straightforward
and presents several obstacles: (i) the measurements are affected
by dust and it is difficult to determine distances, which is neces-
sary to derive radial abundance gradients; (ii) the use of different
abundance diagnostics such as optical and IR collisionally ex-
cited lines (CELs), optical and radio recombination lines (RRL)
or thermal continuum emission can yield differences in the re-
sults (Rudolph et al. 2006); (iii) azimuthal abundance variations
have been reported in the MW (Pedicelli et al. 2009; Balser et al.
2011) that would complicate any analysis of the radial gradients;
and finally (iv) the value of the disc scale-length, and therefore
the disc effective radius, is still controversial, with large discrep-
ancies among different results (typical values are in the range
2 − 4 kpc, e.g. Sackett 1997; Hammer et al. 2007; van der Kruit
& Freeman 2011; Bovy & Rix 2013). All these factors may con-
tribute to an incorrect estimate of the oxygen abundance gradient
in our Galaxy, which would explain the differences found in this
value between the MW and external galaxies. Another aspect to
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take into account is the different radial range considered in the
derivation of the gradient. While in our work the gradients were
computed between 0.5 and 2.0 re (see Sect. 3.5), it is obtained
within a typical range between 5 and 15 kpc for the MW, which
roughly corresponds to 1.4 and 4.2 re (using again a value of 3.6
kpc for the re, Bovy & Rix 2013). This fact may also contribute
to the differences in the gradient values.

The origin of this negative abundance gradient goes back to
the inside-out scenario for the formation of disc galaxies (de-
scribed in Sect. 1), where the inner parts form first, followed by
the formation of the outer regions. Further evidence in the CAL-
IFA survey comes from the analysis of the SP, either from the
study of the SFH (Pérez et al. 2013) or from the study of the
radial age gradient (González Delgado et al. 2014, 2015; Ruiz-
Lara et al. 2016). This scenario is understood as a result of the
increased timescales of the gas infall with radius and the con-
sequent radial dependence of the SFR. This radial decrease in
the chemical abundance has been well established since a long
time (Searle 1971). However, the statement that this gradient
presents a characteristic slope independent of many properties of
the galaxies was only recently expressed (Sánchez et al. 2012b),
which imposes stronger restrictions on our current understand-
ing of disc galaxy growth. The existence of a common gradi-
ent in the abundances indicates that the chemical evolution of
these disc-dominated galaxies is tightly correlated with the mass
growth.

5.2. Flattening of the abundance gradient in the outer regions

Several studies analysing the gas content on galaxies have re-
cently found that beyond the isophotal radii r25, the metallic-
ity radial distribution flattens to a constant value independent of
the galactocentric distance, in contrast to the negative abundance
gradient present at smaller distances (e.g. Martin & Roy 1995;
Vilchez & Esteban 1996; Roy & Walsh 1997; van Zee et al.
1998; Bresolin et al. 2009; Werk et al. 2010; Rosales-Ortega
et al. 2011; Werk et al. 2011; Bresolin et al. 2012; Marino et al.
2012; Sánchez et al. 2012b; López-Sánchez et al. 2015). This
change in the abundance distribution has not only been detected
in the gas, but also in the stellar metallicity (e.g. Yong et al. 2006;
Carraro et al. 2007; Vlajić et al. 2009, 2011). However, all these
works were based on individual galaxies or a very limited sam-
ple of objects. S14 represents the first unambiguous detection
of such a flattening in a statistically significant large sample of
galaxies. This is the first work confirming the flattening by us-
ing spaxel-by-spaxel information, increasing the number statis-
tics and improving the spatial coverage across the discs.

Average radial distributions of oxygen abundances similar to
the distribution shown in Fig. 8 were created for the same sub-
samples analysed in Sect. 4.2 (i.e. according to the morpholog-
ical type, presence or absence of bars and luminosity). No sig-
nificant differences were found between them, which means that
the flattening at the outer regions seems to be a universal prop-
erty of spiral galaxies. It is also important to note that although
Fig. 8 was created using the M13 indicator based on the O3N2
index, the flattening is independent of the adopted calibrator; it
is present when performing the analysis with all the explored
calibrators (as indicated before in Sect. 4.1.1).

The nature of this flattening is still under debate. Because of
the extreme conditions of the outermost parts of galaxies (very
low gas densities and long dynamical timescales), these regions
play a key role in studying the mechanisms involved in their evo-
lution and, therefore, the existence of this flattening can be of
great importance in constraining chemical evolution models.

The flattening, although observed in the more metal poor re-
gions of the galaxies, displays a relatively high abundance value,
which ranges between 8.4 and 8.6 (left panel of Fig. 8). An esti-
mate of the time necessary to enrich the ISM of the outer parts of
discs to these abundance levels, assuming a constant SFR equal
to the present observed value, is higher than 10 Gyr (see Bresolin
et al. 2012, for details of the calculation). According to cos-
mological hydrodynamical simulations, in the inside-out growth
scenario the outer regions of galaxy discs are formed during the
last 4 − 6 Gyr (Scannapieco et al. 2008, 2009). Therefore, if star
formation has proceeded at the same rate as observed today, the
enrichment of the ISM caused by stellar evolution in these outer
parts cannot produce these observed high gas abundance values
during the lifetime of these regions.

Different mechanisms have been proposed to explain this en-
richment in the outer parts of discs in non-interacting galaxies.
One of them is a metal-mixing scenario induced by large-scale
processes of angular momentum transport, such as radial gas
flows (Lacey & Fall 1985; Goetz & Koeppen 1992; Portinari
& Chiosi 2000; Ferguson & Clarke 2001; Schönrich & Bin-
ney 2009; Bilitewski & Schönrich 2012; Spitoni et al. 2013,
among others), resonance with transient spiral structure (Sell-
wood & Binney 2002; Minchev et al. 2012; Roškar et al. 2012;
Daniel & Wyse 2015), or the overlap of spiral and bar resonances
(Minchev & Famaey 2010; Minchev et al. 2011). In the chemical
evolution model developed for the MW by Cavichia et al. (2014),
the presence of the bar induces radial gas flows in the disc whose
net effect is to produce this flattening of the oxygen gradient
at the outer disc. However, as pointed out by the authors, the
differences are small compared with the model without the bar
and probably cannot be distinguished by the observations. Minor
mergers and perturbations caused by orbiting satellite galaxies
are also suggested to increase the metal content in the external
regions (Quillen et al. 2009; Qu et al. 2011; Bird et al. 2012;
López-Sánchez et al. 2015). A slow radial dependence of the
star formation efficiency (SFE) at large galactocentric distances
is another possible explanation to the flattening (Bresolin et al.
2012; Esteban et al. 2013). An alternative interpretation arises
from recent cosmological simulations that propose a balance be-
tween outflows and inflows (through ‘wind recycling’ accretion)
with the intergalactic medium (IGM) as a mechanism govern-
ing the gaseous and metal content of galaxies (Oppenheimer &
Davé 2008; Oppenheimer et al. 2010; Davé et al. 2011, 2012).
Finally, it may well be that a fraction of the metals are recycled
in the halo of the galaxy and do not escape, being mixed with
the incoming gas, as mentioned by Veilleux et al. (2005), and
producing the observed flattening.

All these mechanisms are not mutually exclusive, and a pos-
sible balance between them could be responsible for the actual
chemical evolution of extended discs and the flat abundance of
the outermost parts. Moreover, the dominant mechanism could
be different for structurally different galaxies. However, our cur-
rent results do not allow disctinguishing between the differ-
ent mechanisms; additional information is needed to assess this
question.

5.3. Abundance decrease in the inner regions

As a deviation from the monotonic behaviour of the oxygen
abundances increasing towards the centre, several studies have
found that galaxies sometimes present a nearly flat distribu-
tion of abundances or even a drop in the inner regions, at
r/re < 0.3−0.5 (Belley & Roy 1992; Rosales-Ortega et al. 2011;
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Sánchez et al. 2012b, 2014). This feature has also been detected
in simulations (Mollá & Díaz 2005; Cavichia et al. 2014).

For our Galaxy, the studies on gas abundance have not been
able to properly trace the oxygen abundance at these innermost
parts of the disc and therefore were not able to find evidence of
this behaviour. However, a chemical evolution model developed
by Cavichia et al. (2014) has detected this ‘drop’ (or flattening)
in the gas abundances of the inner regions as caused by the pres-
ence of a bar. According to this model, the presence of the bar in-
duces radial flows that increase the SFR at the corotation radius,
which also produces an increase in the oxygen abundance. This
results in an apparent decrease or flattening of the abundance in
the central regions. A recent study focused on stellar populations
(Hayden et al. 2014) has detected a flattening in the metallicity
of the inner regions of the Galaxy, more significant in the low-
[α/M] (α element abundances) stars. They also explained this
feature by the existence of a central bar that produces a mixing
of stars in these inner regions.

The analysis presented here can help us to confirm this sce-
nario where the inner drop is caused by the influence of a bar.
If the bar were the dominant effect that produces this decrease
at inner regions, then it would be expected to detect it more fre-
quently in barred galaxies. However, our analysis yields that only
30% of galaxies in the sample showing the drop are barred (52%
if we also consider the galaxies that are supposed to have a bar
but where it is not clearly visible).

Another explanation proposed by observational studies on
gas abundance for external galaxies, like NGC 628 (Sánchez
et al. 2011) and later using CALIFA data in a large sample of
galaxies (S14), is that this inner decrease was associated with
the presence of a circumnuclear star-forming ring of ionised gas
related to the inner Limbland resonance.

To explore the possibility that the abundance drop is due to
the presence of a star-forming ring, a visual inspection of the Hα
intensity maps for the galaxies with signs of this drop was car-
ried out. This analysis showed that 48% of the galaxies present
evidence of a star-forming ring that is spatially located at these
inner galactocentric distances (r/re ∼ 0.3 − 0.5). However, this
scenario must be confirmed by a more robust and detailed anal-
ysis of the stellar and gas kinematics.

Despite these two possible explanations (influence of a bar
or a circumnuclear star-forming ring), the physical origin of this
drop is not still well established. On the other hand, if the origin
of this drop were due to radial motions of the gas, it would also
have an impact on the overall distribution of abundances at larger
radii. To explore this possible effect, we derived the mean value
for the slope of the abundance gradients only for the galaxies
presenting this feature, obtaining a mean αO/H = − 0.10 dex/re
and σ = 0.04 dex/re. This value is slightly higher than the one
derived for the galaxies without evidence of this inner drop in the
abundances, which is αO/H = − 0.06 dex/re and σ = 0.05 dex/re.
A KS test suggested that the two distributions are different (P-
value of 3%), consistent with a radial movement of the gas as
the cause of this feature.

Finally, 37% of the galaxies displaying this inner abundance
drop neither showed evidence of a star-forming ring nor of a bar.
This suggests that another mechanism related to radial move-
ments is responsible for causing this feature.

To shed some further light on this question, we investigated
the presence of this feature depending on the integrated stellar
mass of the galaxies. We conclude that the galaxies displaying
the strongest oxygen abundance inner drop are the most massive
ones (Fig. 9), suggesting that stellar mass plays a key role in
shaping the inner abundance profiles.

In summary, this is the first study that analysed the oxygen
abundance distribution for a sample of face-on spiral galaxies
spaxel by spaxel. Our final sample of 122 galaxies provided more
than 185 000 oxygen abundance values (∼ 8 200 of them beyond
two disc effective radii) to carry out the analysis. The results
were compared to those obtained following the classical proce-
dure of detecting H ii regions, leading to equivalent results that
point to the same conclusions: (i) the existence of a common
abundance gradient, independent of other properties of galax-
ies, in particular the presence of bars, which seems not to have
the flattening effect predicted by numerical simulations; (ii) the
existence of a flattening of the abundance gradient in the outer
regions of discs, which seems to be a common property of disc
galaxies; and (iii) the existence of a drop of the abundance in
the inner regions of disc galaxies, only visible in the most mas-
sive ones and most probably associated to radial movements of
the gas (sometimes a bar or a circumnuclear star-forming ring).
These results support the scenario in which disc galaxies present
an overall inside-out growth. However, clear deviations were
shown with respect to this simple scenario that affect the abun-
dance profiles in both the innermost and outermost regions of
galaxies.

The agreement between the two methods arises because the
spaxel size of the CALIFA datacubes is of the order of the size of
a typical H ii region. However, this is not expected for IFS data
with better spatial resolution and a smaller spaxel size, where
different areas of the H ii regions can be resolved and even abun-
dance gradients can be found. Different procedures that can ac-
comodate data that are capable of resolving H ii regions may be
needed.
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Vlajić, M., Bland-Hawthorn, J., & Freeman, K. C. 2009, ApJ, 697, 361
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Appendix A: Fundamental parameters and oxygen abundance information

In this section we present a table with general information and derived oxygen abundance information for all the galaxies in the
sample. From left to right the columns correspond to

(a) the galaxy name,
(b) the morphological type,
(c) g−band absolute magnitude,
(d) the logarithm of the integrated stellar mass in units of solar masses,
(e) the disc effective radius (re, in kpc),
(f) the oxygen abundance value at one effective radius,
(g) the slope of the oxygen abundance gradient measured between 0.5 and 2.0 re, and
(h) the correlation coefficient of the linear fit (c.c.).

Table A.1. Fundamental properties and oxygen abundance information. Details are given in Appendix A above.

Name Morph Mg log10 Mass re [O/H]re αO/H c.c.
type [mag] [M�] [kpc] [dex] [dex/re]

(a) (b) (c) (d) (e) (f) (g) (h)

IC 0159 SBdm -19.99 9.82 5.42 8.40 ± 0.06 -0.03 ± 0.03 0.664
IC 0674 SBab -21.43 10.91 11.55 8.44 ± 0.07 -0.100 ± 0.015 0.871
IC 0776 Sdm -19.11 9.27 8.38 8.27 ± 0.05 -0.08 ± 0.04 0.855
IC 1256 SABb -20.73 10.37 6.82 8.58 ± 0.06 -0.146 ± 0.015 0.983
IC 1683 SABb -20.45 10.51 4.78 8.57 ± 0.05 -0.08 ± 0.05 0.972
IC 4566 SBb -21.27 10.94 10.30 8.54 ± 0.04 0.00 ± 0.04 0.007
MCG-01-10-019 SABbc -20.62 10.21 12.04 8.40 ± 0.06 -0.12 ± 0.04 0.925
NGC 0001 Sbc -21.07 10.80 5.99 8.56 ± 0.06 -0.020 ± 0.014 0.470
NGC 0036 SBb -21.77 10.90 14.57 8.53 ± 0.07 -0.04 ± 0.03 0.890
NGC 0160 Sa -21.55 11.06 11.44 8.53 ± 0.08 0.05 ± 0.07 0.851
NGC 0165 SBb -21.09 10.59 13.04 8.51 ± 0.04 -0.07 ± 0.04 0.966
NGC 0171 SBb -21.26 10.72 6.98 8.58 ± 0.06 -0.072 ± 0.016 0.894
NGC 0214 SABbc -21.60 10.85 6.66 8.58 ± 0.05 -0.059 ± 0.012 0.991
NGC 0234 SABc -21.40 10.65 6.36 8.58 ± 0.05 -0.07 ± 0.02 0.982
NGC 0237 SBc -20.72 10.28 4.27 8.56 ± 0.05 -0.066 ± 0.011 0.977
NGC 0257 Sc -21.60 10.80 8.67 8.57 ± 0.05 -0.074 ± 0.014 0.913
NGC 0309 SBcd -22.38 10.83 13.37 8.50 ± 0.05 -0.15 ± 0.03 0.986
NGC 0477 SABbc -21.24 10.50 14.26 8.43 ± 0.08 -0.19 ± 0.06 0.990
NGC 0496 Scd -20.93 10.35 10.86 8.46 ± 0.06 -0.14 ± 0.03 0.970
NGC 0570 SBb -21.24 10.96 8.61 8.47 ± 0.03 -0.10 ± 0.03 0.965
NGC 0716 SABb -20.72 10.58 5.54 8.50 ± 0.06 -0.09 ± 0.02 0.971
NGC 0768 SBc -21.33 10.55 10.40 8.41 ± 0.08 -0.013 ± 0.014 0.469
NGC 0776 SBb -21.26 10.70 6.88 8.56 ± 0.06 -0.030 ± 0.013 0.822
NGC 0787 Sa -21.30 10.96 6.68 8.50 ± 0.06 -0.04 ± 0.02 0.965
NGC 0873 Scd -21.17 10.41 4.32 8.53 ± 0.03 -0.061 ± 0.011 0.995
NGC 0941 Scd -19.13 9.35 2.87 8.40 ± 0.06 -0.034 ± 0.019 0.794
NGC 0976 Sbc -21.50 10.80 5.72 8.48 ± 0.00 -0.068 ± 0.018 0.753
NGC 0991 SABcd -19.38 9.61 3.65 8.41 ± 0.06 -0.09 ± 0.02 0.851
NGC 1070 Sb -21.73 11.00 7.08 8.53 ± 0.05 -0.006 ± 0.014 0.470
NGC 1093 SBbc -20.82 10.75 7.27 8.52 ± 0.06 -0.090 ± 0.015 0.979
NGC 1094 SABb -21.55 10.72 7.45 8.50 ± 0.05 -0.084 ± 0.012 0.950
NGC 1659 SABbc -21.15 10.59 6.35 8.50 ± 0.06 -0.094 ± 0.012 0.956
NGC 1667 SBbc -22.02 10.80 4.91 8.56 ± 0.04 -0.033 ± 0.011 0.936
NGC 2253 SBbc -21.06 10.47 2.53 8.57 ± 0.06 -0.011 ± 0.012 0.558
NGC 2347 SABbc -21.66 10.72 6.31 8.53 ± 0.06 -0.108 ± 0.012 0.998
NGC 2449 SABab -20.98 10.83 5.85 8.56 ± 0.05 -0.002 ± 0.011 0.252
NGC 2486 SBab -20.64 10.58 9.55 8.49 ± 0.05 -0.07 ± 0.03 0.989
NGC 2487 SBb -21.68 10.77 12.04 8.54 ± 0.05 -0.007 ± 0.015 0.078
NGC 2530 SABd -20.96 10.19 9.78 8.40 ± 0.06 -0.09 ± 0.03 0.994
NGC 2540 SBbc -21.15 10.50 8.28 8.49 ± 0.06 -0.063 ± 0.013 0.753
NGC 2604 SBd -19.97 9.64 4.09 8.35 ± 0.06 -0.037 ± 0.013 0.216
NGC 2639 Sa -21.59 11.18 4.88 8.57 ± 0.06 -0.037 ± 0.019 0.723
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Table A.1. Continued.

Name Morph Mg log10 Mass re [O/H]re αO/H c.c.
type [mag] [M�] [kpc] [dex] [dex/re]

(a) (b) (c) (d) (e) (f) (g) (h)

NGC 2730 SBcd -20.56 10.11 7.83 8.46 ± 0.05 -0.049 ± 0.014 0.945
NGC 2805 Sc -20.30 10.03 7.86 8.44 ± 0.04 -0.11 ± 0.03 0.991
NGC 2906 Sbc -20.14 10.39 3.41 8.60 ± 0.04 -0.034 ± 0.011 0.929
NGC 2916 Sbc -21.57 10.75 8.08 8.56 ± 0.04 -0.100 ± 0.013 0.986
NGC 3057 SBdm -19.01 9.18 6.02 8.27 ± 0.08 -0.12 ± 0.07 0.997
NGC 3106 Sab -22.16 11.31 13.31 8.50 ± 0.05 -0.06 ± 0.05 0.922
NGC 3381 SBd -19.74 9.68 3.07 8.50 ± 0.03 -0.057 ± 0.012 0.972
NGC 3614 SABbc -20.72 10.21 9.56 8.42 ± 0.06 -0.22 ± 0.05 0.999
NGC 3687 SBb -20.47 10.28 4.72 8.50 ± 0.06 -0.156 ± 0.010 0.989
NGC 3811 SBbc -20.92 10.45 5.39 8.57 ± 0.04 -0.076 ± 0.010 0.923
NGC 4047 Sbc -21.41 10.68 5.05 8.57 ± 0.05 -0.104 ± 0.012 0.972
NGC 4185 SABbc -21.35 10.72 10.31 8.55 ± 0.05 -0.082 ± 0.012 0.898
NGC 4210 SBb -20.46 10.28 4.42 8.58 ± 0.04 -0.085 ± 0.011 0.935
NGC 4470 Sc -20.37 9.98 3.46 8.42 ± 0.02 -0.017 ± 0.008 0.037
NGC 4961 SBcd -19.97 9.68 3.87 8.42 ± 0.05 -0.095 ± 0.012 0.973
NGC 5000 SBbc -21.32 10.66 8.16 8.55 ± 0.06 -0.065 ± 0.012 0.855
NGC 5016 Sbc -20.61 10.23 4.64 8.54 ± 0.05 -0.112 ± 0.013 0.974
NGC 5056 SABc -21.43 10.45 8.65 8.44 ± 0.05 -0.125 ± 0.010 0.981
NGC 5157 SBab -21.81 11.27 10.06 8.55 ± 0.07 -0.01 ± 0.02 0.442
NGC 5205 SBbc -19.66 9.88 3.79 8.52 ± 0.06 -0.04 ± 0.02 0.690
NGC 5320 SABbc -20.72 10.29 8.17 8.50 ± 0.07 -0.028 ± 0.018 0.985
NGC 5376 SABb -20.31 10.47 3.76 8.60 ± 0.05 -0.037 ± 0.013 0.685
NGC 5378 SBb -20.64 10.62 7.36 8.53 ± 0.04 -0.01 ± 0.03 0.314
NGC 5406 SBb -21.94 11.19 9.72 8.53 ± 0.06 -0.03 ± 0.02 0.863
NGC 5480 Scd -20.30 10.14 3.13 8.57 ± 0.04 -0.046 ± 0.012 0.989
NGC 5520 Sbc -19.77 9.85 3.39 8.49 ± 0.04 -0.089 ± 0.009 0.982
NGC 5533 Sab -21.91 11.23 14.16 8.49 ± 0.05 -0.06 ± 0.03 0.811
NGC 5622 Sbc -20.41 10.22 6.54 8.53 ± 0.08 -0.039 ± 0.014 0.813
NGC 5633 Sbc -20.44 10.27 2.50 8.60 ± 0.03 -0.064 ± 0.007 0.917
NGC 5656 Sb -21.11 10.62 4.28 8.55 ± 0.05 -0.097 ± 0.011 0.984
NGC 5657 SBbc -20.48 10.28 6.95 8.47 ± 0.07 -0.038 ± 0.012 0.757
NGC 5665 SABc -20.66 10.22 4.72 8.50 ± 0.05 -0.04 ± 0.03 0.904
NGC 5720 SBbc -21.79 10.85 12.32 8.53 ± 0.05 -0.130 ± 0.017 0.920
NGC 5732 Sbc -20.06 9.93 6.52 8.47 ± 0.06 -0.18 ± 0.03 0.999
NGC 5735 SBbc -21.02 10.38 8.05 8.49 ± 0.06 -0.16 ± 0.02 0.997
NGC 5772 Sab -21.56 10.94 9.39 8.52 ± 0.06 -0.06 ± 0.02 0.995
NGC 5829 Sc -21.36 10.53 10.77 8.43 ± 0.05 -0.074 ± 0.014 0.927
NGC 5888 SBb -22.06 11.29 11.45 8.54 ± 0.06 -0.02 ± 0.02 0.690
NGC 5947 SBbc -21.02 10.37 7.70 8.49 ± 0.05 -0.100 ± 0.013 0.983
NGC 5957 SBb -20.34 10.28 4.69 8.56 ± 0.05 -0.06 ± 0.02 0.958
NGC 6004 SBbc -21.30 10.71 7.96 8.53 ± 0.06 -0.033 ± 0.020 0.784
NGC 6063 Sbc -20.05 10.06 6.34 8.48 ± 0.05 -0.17 ± 0.02 0.986
NGC 6154 SBab -21.63 10.95 9.42 8.52 ± 0.07 -0.003 ± 0.019 0.028
NGC 6155 Sc -20.28 10.12 3.47 8.55 ± 0.03 -0.068 ± 0.009 0.973
NGC 6301 Sbc -22.23 11.02 15.71 8.51 ± 0.04 -0.063 ± 0.014 0.879
NGC 6941 SBb -21.85 10.93 12.10 8.54 ± 0.06 -0.05 ± 0.03 0.719
NGC 7321 SBbc -22.06 10.81 9.58 8.52 ± 0.05 -0.082 ± 0.011 0.964
NGC 7364 Sab -21.41 10.89 5.92 8.57 ± 0.07 -0.028 ± 0.013 0.777
NGC 7466 Sbc -21.29 10.83 12.32 8.47 ± 0.05 -0.085 ± 0.018 0.933
NGC 7489 Sbc -21.79 10.40 10.59 8.41 ± 0.06 -0.150 ± 0.013 0.970
NGC 7591 SBbc -21.35 10.75 8.43 8.52 ± 0.07 -0.084 ± 0.020 0.960
NGC 7625 Sa -19.71 10.07 2.00 8.54 ± 0.04 -0.033 ± 0.011 0.889
NGC 7653 Sb -21.11 10.50 6.17 8.52 ± 0.05 -0.090 ± 0.015 0.995
NGC 7691 SBbc -20.97 10.21 8.94 8.45 ± 0.07 -0.10 ± 0.04 0.967
NGC 7716 Sb -20.56 10.32 4.46 8.49 ± 0.04 -0.025 ± 0.010 0.850
NGC 7782 Sb -21.94 11.18 10.82 8.54 ± 0.06 -0.037 ± 0.018 0.857
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Table A.1. Continued.

Name Morph Mg log10 Mass re [O/H]re αO/H c.c.
type [mag] [M�] [kpc] [dex] [dex/re]

(a) (b) (c) (d) (e) (f) (g) (h)

NGC 7819 Sc -20.68 10.39 8.36 8.49 ± 0.06 -0.12 ± 0.02 0.985
NGC 7824 Sab -21.47 11.30 11.60 8.48 ± 0.05 -0.03 ± 0.05 0.991
UGC 00005 Sbc -21.50 10.83 9.56 8.52 ± 0.04 -0.055 ± 0.009 0.987
UGC 00036 SABab -20.94 10.98 8.64 8.51 ± 0.06 -0.13 ± 0.04 0.997
UGC 01918 SBb -20.53 10.56 7.95 8.53 ± 0.05 -0.08 ± 0.04 0.996
UGC 02311 SBbc -21.59 10.74 7.95 8.52 ± 0.04 -0.050 ± 0.010 0.942
UGC 03253 SBb -20.43 10.68 6.54 8.52 ± 0.04 -0.125 ± 0.012 0.938
UGC 03973 SBbc -21.86 10.74 7.66 8.50 ± 0.05 0.008 ± 0.009 0.209
UGC 04195 SBb -20.68 10.50 8.02 8.52 ± 0.07 -0.020 ± 0.013 0.789
UGC 04262 SABbc -21.26 10.60 12.31 8.49 ± 0.10 -0.25 ± 0.03 0.953
UGC 04308 SBc -20.95 10.30 6.73 8.52 ± 0.06 -0.087 ± 0.011 0.964
UGC 04375 Sbc -19.90 10.16 6.12 8.49 ± 0.04 -0.121 ± 0.015 0.948
UGC 05108 SBb -21.51 10.89 17.80 8.49 ± 0.04 -0.12 ± 0.05 0.977
UGC 07012 SABcd -19.68 9.45 5.28 8.40 ± 0.08 -0.11 ± 0.03 0.995
UGC 08781 SBb -21.69 11.05 17.57 8.48 ± 0.06 -0.02 ± 0.03 0.904
UGC 09291 Scd -20.32 10.34 7.64 8.44 ± 0.06 -0.18 ± 0.03 0.986
UGC 09476 Sbc -20.49 10.21 5.89 8.49 ± 0.05 -0.057 ± 0.012 0.971
UGC 09777 Sbc -20.47 10.31 7.67 8.48 ± 0.08 -0.00 ± 0.06 0.266
UGC 09842 SBbc -21.18 10.63 14.27 8.50 ± 0.06 -0.031 ± 0.015 0.533
UGC 11649 SBab -20.84 10.66 6.23 8.53 ± 0.07 -0.10 ± 0.03 0.890
UGC 12224 Sc -20.48 9.97 7.82 8.47 ± 0.06 -0.13 ± 0.05 0.987
UGC 12633 SABab -20.35 10.37 7.09 8.47 ± 0.00 -0.03 ± 0.02 0.666
UGC 12816 Sc -20.35 9.82 8.56 8.42 ± 0.06 -0.07 ± 0.02 0.767
UGC A021 SBdm -19.48 9.45 5.12 8.35 ± 0.06 -0.11 ± 0.06 0.700
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