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ABSTRACT

A variational form for the dynamics of a classical SyS-
tem interacting with a guantum one is proposed as a nonlinear gen
eralization of the nonrelativistic quantum theory. In addition to
the reievance of this kind of problem for the calculation of nu-
clear models in which some degrees of freedom are treated gquan-
tum-mechanically and others classically, the equations dJderived in
this paper are designed to describe .the reduction of the wave

packet.
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The interaction between quantum and classical systems,
fundamental in order to understand the quantum measurement pro
blem!’?2, has been widely studied in the literature®’*’5’%, on
the other hand, there is a variety of physical problems that
claims for a combined quantum-classical treatment: quantizations
of solitons, theories of nuclear fission, heavy ion scattering,
quantum corrections to classical radiation, semiclassical theory
of gravitation, and others. Partially motivated by some of: these
problems and studying the transitions from one mechanics to the
other, Shirokov' developed a combined algebra for quantum and
classical mechanics and showed that an unified formulation
based on it is possible. Interested in the semi-classical the-
ory of gravity, Kibble and collaborators ® (see also ref. (7))
derived a time-dependent Schrddinger equation coupled to the
classical Einstein's equation from an action principle. In
this letter we will obtain from a variational principle, the
dynamic equations for the interaction between . classical. and
quantum sub-systems, irrespectively of any particular model.
The obtained equations describe a kind of classical-quantum dy-
namics (cg-dynamics). An alternative derivation of these e-
quations was already obtained by us in a previous work®. Here
our main purpose is to explore these coupled equations, des-
cribing the interaction between system (quantum) and apparatus
(classical), in order to avoid the well know "collapse of the
state vector" or "reduction of the wavepacket" arising from
the Von-Neumann' theory of measurement.

First one defines a whole system, which will be cal-

led classical-quantum system (cg-system) throughout this paper,
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constituted by two sub-systems in interaction, one being clas
sical with R degrees of freedom and the other guantum with N
degrees of freedom. The classical sub-system is described by
R classical variables (c—numbers) and the quantum one is given
by a complete set of basis states, which in the absence of the

c-number variables are the eigenstates of the time-independent

Hamiltonian operator
q Hq (x ,pJ) ’ (

where ﬁj(j =1,2,...,N) represents the coordinate operators of

: ~ . 3 .
the N quantum degrees of freedom (q-numbers)»andpj =-iff ~—r.

axJ
It is well-known that the fundamental equation of a non-rela-

tivistic quantum dynamics may be established from the

action
integral
£2 R B
al¢] =f at <o (t) | 53 K _(xI,p.) [¢(t)> (2)
F1
by means of the variational principle SA = 0, in which the

variation is assumed to be zero at the limits, and provided that the

normalization of state vectors |[¢(t)> is maintained.
Second, in order to characterize the dynamic of the
cqg-system, we .define an extended Hamiltonian operator

Ao

H = H(x),pia%47) (3)

where the c-number coordinates, as well as their respective ve

J
locities aJ=%%; take the role of.continuous parameters. From
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(3) we construct the following extended action integral

E;, :l fdtﬂplrh i-ﬁ(;j,éj;a%dmw (4)

where |$> is the state vector of the cq-system and Dirac's bra
cket symbol means integration over the configurational space
{x7} only. Requiring as before that §A = 0, but splitting the

variation symbol into two independent parts
§ =6 + 8§ 5
q (5)

where dq represents a variational operator due to the transform
ation of the state vectors with c-number coordinates being held
fixed, and q:fepresenu;a variation due to the transformation of
the c-number coordinates freezing the functional space of the

state vectors, we obtain from (4) and (5)

2 3 5 _ 2
6A=f thsq<q;|iﬁ Yt H|1p>+c$ <1p[ 3 " H|xp>] =0 (6)

and therefrom
tz : B A 3 A A
f dt[<6q1b|rﬁ ﬁ-nlup + <P | HE a ~H|sqw> ~-6c<¢|H|¢>] =0 (7)

In order to satisfy this variational condition for all c-number
variables{aJ, state vectors ¥ and their corresponding complex
conjugates, the above. condition must be satisfied by each of
the three terms separately. The formal rules for computing va-

riations provide that the first two terms of'Eq. (7) go over
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to the time-dependent Schrddinger equation and its complex con-
jugate with the extended Hamiltonian (3). The last term in Eq.

(7) leads to

t ' ' ' t
J 2ae J| . - 23 ]GcaJ -3 & 5o 2= 0 (8)
ty J - 30 o4 J 34
t

where H' EH'(aJ,&J) =<y |H|Y>. The fixed endpoint conditions,
aJ(tl) =aJ(t2) =0, make null the last term of Eq. (8). As usual,
the coefficients  of GcaJ in this last term will be called gen

eralized mementum Py

]
pJ = —-..aHJ = BJ <lp|H'1p> (9)
34 34
Therefore, the variational principle 8A =0, with Eq. (4) and

Eg. (5), is equivalent to the following system of coupled equa-

tions:
. 3 o
h 3E|w> = H|y> (10)
and
) d, 3
— - —(——)]<¢|le> =0 (11)
[BaJ dt B&J

oJ
T,67,¢).

with <xj]w> = w(xj;d

The self-consistent coupled equations (10) and (1ll) are
the variational forms searched for, which are a time-dependent
Schr8ddinger equation coupled, by means of the extended Hamiltdnian

A

operator H, to an Euler-Lagrange equation wheré ' the quantity
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<w|ﬁ|w> plays the role of the classical Lagrangian.

It should be emphasized that, although the Schrédinger
equation (10) alone is linear, it appears here as intrinsically
nonlinear. This is sd because, in equation. (10), the state vec-
tors |¢Y> depend on the c-number parameters whiéh in tum depernd
on them, according to equation (11). In consequence, the super-
position principle is violated. Extra explicit . nonlinearities
can be obtained by adding terms to the action integral (4), cf.
Kibble®’’. Specific solutions of these equations will be:examined
in a paper to come.

In order to stﬁdy the consistence of these equations,

it is convenient to introduce a model Hamiltonian

Y

H(xj,pj;aJ,dJ) =Hc(aJ,aJ) +Hq(xJ,pj) + vx';07,8Y) (12)

that separates the extended Hamiltonian (3) into a c-humber
part Hc(aJ,dJ) and g-number part Hq(;j,;j) whith the coupling
between them described by the interaction operator \;=\,}(}:j ;OLJ,CSLJ)L
Usually in many nuclear problems, specially in heavy
ion collision as was already noticed by Liran et al.?, it is
presupposed, in disagreement with equations (10) and (11), that
there is no reaction of the quantum on the classical dyhamics and
all the influence of the classical subsystem on the quantum subsys
tem is produced directly, via the interaction potential
G(;jﬂf,dJ), imposed a priori. Such procedure is equivalent to
considering only the influence of the c-number dynamic over

the g-number one without taking into account the corresponding

reaction in a self-consistent way. In that case, the classical
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time dependent variables aJ(t) are actually prescribed in time.
In the limit case, when'VCXJ;aJ,dJ) = 0, ' separating

the ¢ and g variables
vixd;at,a?, 0 = feleemd, e, (13)
we get from (10), (11) and (12) two uncoupled equations,
yﬁ (th) = Hq(;j,lgj)cb(xj.,t) #2003, 0) (14)

and

9 d, 9o J Jy2
2. - __.@___Q] If(a ,6%) | =0 , (15)
[an dt BdJ

one describing the quantum susbsystem and the other the clas-
sical one, as expected. The X in equation (1l4) is a constant,
arising from the method of separation of variables, that must
be defined by the boundary conditions.

This ) parameter, a natural consequence of the clas-
sical-quantum dynamics in the limit G = 0, has a very 'simple
physical interpretation, it describes the stationary (A = 0)
'or the decay (imaginary )A) characters of the quantum subsystem.

The information that we can obtain from the micro-
world, regarded as subject to quantum laws, are always given
by means of macroscopic instruments, which are described by
classical laws. The description of possibles correlations bet

ween the state of the observed system and the instruments is

the main feature of the measurement problem of the quantum
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theory. Thus we expect that the kind of formulation developed
in this letter, in which the quantum and classical systems are
considered in the same footing, would be one way to avoid .the
measurement. problem. For this it is enough to consider, in disagre
ement with the Copenhagen interpretation, where both system
and apparatus are regarded as subject to quantum laws, that
the micro-system is described by the g-number variables and
the apparatus by the c—number variables with the dynamical in-
teraction between them described by the coupled equations (10)
and (lli. The purely quantum or the purely classical descrip-
tion are to be considered as the two limit of the .cg~-dynamics
given by equations (14) and (15). The question of how select
the degrees of freedom which must be considered as classical
or quantum is to be solved solely by the experience. One may
continue to interpret the absolute square of the wave function asthe prob
ability of findind the localized particle at a given point, but
now this probability distribution has naturally become dbserver

J. Frederick!® has shown

dependent, that is, a function of ‘o
that this dependence would eliminate the acausal behaviour of
the collapse of the wave function.

All this is consistent with the fact, already being
claimed by others!!, that the description of the dynamical re-
duction of the state vector could be obtained through a non
linear generalization of the wave equation.

In summary from a variational principle a system of
coupled equations is obtained which treats the classical and

gquantum systems in interaction in a  self-consistent. 'manner.

This system of coupled equations goes over to the usual Schrédinger
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and Euler-Lagrange equations when no interactions is present
between them. It seems that these coupled equations are interesting for
the calculation of nuclear models which can be characterized
by dynamic interaction between collective, classically treated
degrees of freedom and intringic, quantically  treated ones.
Finally, we expect that this kind of formulation clarifies the
dynamics inherent in the quantum measurement problem.

This work was partially supported by CNPg (Brazilian

Government Agency) .
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