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ABSTRACT

A graph theoretic analysis is made of the m-spin correlation
functions of the M-state Potts model. In paper I, the
correlation functions for m=2 were expressed in terms of rooted
mod-» flow polynomials. Here we introduce a more general type of
polynomial , the partitioned m-rooted flow polynomial , which
plays a fundamental role in the calculation of the multi-spin
correlation functions. -The m-rooted equivalent transmissivities
of Tsallis and Levy are interpreted in terms of percolation
theory and are expressed as linear combinations of the above

correlation functions.

Key-words: Potts model; Many-spin correlation function; Graph theory;

Statistical mechanics.



CBPF-NF-078/85

1 INTRODUCTION

Since its formulation (Potts 1952), the M-state Potts model
has been extensively studied (for a review of thé subject see Wu
1982). An 1interesting and widely quoted probabilistic
interpretation of this model has been given (Kasteleyn and
Fortuin 1969, Wu 1978) which places the Potts model in the
context of percolation theory. This relation has advantages in
both directions. On the one hand it allows the powerful
techniques developed ipvthe theory of thermal critical phenomena
to be used in the study of percolation problems. On the other
hand it allows the geometric insights gained from the study of
percolation theory to become useful in understanding critical
phenomena in general.

Kasteleyn and Fortuin (1969) used a variable p,, directly
related to the interaction parameter, which is the probability
that the edge e 1s present in the corresponding percolation
model. Recently Essam and Tsallis (1985, paper I of this series
which will herein be referred to as PFl) showed that, by using a

different but related variable t the connection with

e’
percolation theory could be maintained but in addition their
interpretation related the partition function and the spin pair
correlation function to the expected number of mod-» flows. Thus
the geometric intuition associated with the motion of fluid in a
network could be bréught to bear on the Potts model. The variable
t. is the "thermal transmissivity” of the edge e used by Tsallis

e

and Levy (1981) in their real space renormalisation group studies
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(see also Yeomans and Sthinchcombe 1980); t is also the w-
variable of Domb (1976). It was also shown in PFl that for any
spin cluster with graph G, the correlation function between spins
s; and s, 1s proportional to the "equivalent transmissivity”
tig(t,c)between roots 1 and 2 of G which was so important in the
development of real space renormalisation group methods for the
Potts model (Tsallis and Levy 1981; for a review see Tsallis
1985).

The "equivalent transmissivity” is the ratio of two multi-
linear forms in the fé variables, a numerator N;2(t,G) and a
denominator D(t,G) which 1is proportional to the partition
function Z(t,G). For GG the coefficient of ;D;te in D(t,G) was
shown (PFl) to be equal to the number of proper mod->» flows on G”
which is a polynomial in » called the flow polynomial F(»,G")
(Tutte 1954, Rota 1964, Tutte 1984). Thus D(t,G) is the
generating function for F(f,G'L Similarly le(t,G) is the
generating function for the polynomials F12(1G7), G°£ G, called
rooted flow polynomials in PFl. Flz()ﬁf) is the number of proper
mod-» flows on G° in the presence of fixed non-zero "external"”
flow between the roots. F(M,G") and F;2(*,G”) are both
topological invariants and Flz(),G') satisfies the same "deletion-
contraction rule"” as was dgrived for F(MG™) by Tutte (1954). The
latter rule was shown in PFl to lead to the "break-collapse
equation” conjectured by Tsallis and Levy (1981) for ti%(t,c).

In the present paper we extend the results of PFl for the
spin pair correlation function to the correlation function

Flzn.m(G) among the components of m spins dlong one of the >
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special directions in which the spins are allowed to point.
Flz(c) and [123(0) appear Iin the field theoretic formulation of
the_renormalisation group equations for the Potts model (Amit
1976). An extension of tiqz(t,G) to m-rooted graphs (m2>2 2) has
been introduced by Tsallls and Levy (198l) and t;;3(t'c) has been
used in real space renormalisation group calculations on the
triangular and honeycomb lattices (Tsallis and Levy 1981, de
Magalhaes et al 1982, Tsallis and dos Santos 1983). Here we prove
that t;;3(c) is proportional to l123(G), however for m2 4 no such
simple relation has been found.

It turns out that f&zu.m(G) is a linear combination of the
equivalent transmissivities tzﬂ(c) corresponding to all possible
partitions P of the m roots into blocks. This relation (see
eq.3.18a) is one of the main results of the present paper. We
call t;ﬂ(c) a partitioned m-rooted equivalent trapnsmissivity. The
equivalent transmissivity tf%.”m(c) is the special case of
t;q(c) in which P has only one block. In the limtt A1, t2(6)
becomes the probability CW(G) that the roots 1,2,...,m of G are
connected in blocks according to the partition ® in a bond
percolation process. In other words, roots which belo&g to
the same block of P are connected by an open path (i.e. a path
formed by edges which are present) while roots which belong to
different blocks are not counnected Iin this way. Clz(G) is the
usual pair-connectedness function (Essam 1972) and we call CP(G)
the partitioned m-rooted connectedness. A similar partitioning
also appears in the transfer matrix formulation of the Potts

model {(Blote and Nightingale 1982).
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In order tp express tgﬁ(c) in terms of correlation funtions

it is necessary to 1introduce corresponding partitioned
correlation functions qP(G) involving spin components along
several of the different special directions (one direction for
each block). For given m, we show (eqs. (3.41la) and (3.44)
together) that fb(c) is a linear combination of the t;S(G),
P e fJ(M) where ‘D(M) is the set of all partitions of
M={1,2,...,m}. For m=4 these relations are explicitly inverted
(eqs. (3.46) and (3.40a)) to give t;q(G) as 38 linear combination
of the P[P\(G), P'eP(M).»'We expect that the relations for m > 4 are
also invertible ;nd this provides an interpretation of the m-
rooted equivalent transmissivities of Tsallis and Levy (1981) in
terms of the more usual spin correlation functions. In papers III
and IV (de Magalhaes and Essam 1985a, b, which we shall refer to
as PF3 and PF4 respectively) we develop powerful techniques which
enable the computation of téq(G) for large clusters. The above
relations enable the partitioned correlation functions to be
found once the equivalent transmissivities have been calculated.

A1l the partitioned equivalent transmissivities for a given
graph G may be expressed as the ratio of two bond percolation
averages having a common denominator D(G) and a numerator Np(G)
depending on the partition ( see eq.(3.18b)). As previously
stated, the denominator when expressed as a multi-linear form in
the t, variables is the generating function for the flow
polynomials of 1its subgraphs. The coefficients in the
corresponding multi-linear expansion of Nw(t,G) (eq.(3.23)) are

polynomials in », Fp(MG”), having all of the. properties of flow
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polynomials (see 84.3) and we shall call them partitioned m-
rooted flow polynomials. Similarly to F12(>,G’), we show that
F123(),G') is the number of proper mod-} flows on G” given that
there are two fixed non-zero external flows (between the pairs 1,
2 and 1, 3 say). Examples of Fy,(»G) and F123(>,G) may be seen
in Amit“s paper (1976), but the interpretation in terms of flows
seems not to have been recognised. For m» 4 it appears that there
is no similar combinatorial problem which determines Fm(7;G’L
However we shall show that, for general m, the partitioned flow
polynomials may be expressed as linear combinations of unrooted
flow polynomials.

The Fw(},G) will play a vital role in the development of
formulae for the calculation of partitioned equivalent
transmissivities ( and hence correlation functions) of large
networks by decomposition (or construction from) smaller parts
(PF3 and PF4). They are, of course, also important in the
derivation of series expansions for correlation functions of
lattice systems. Finally, F?(),G) evaluated at M=1 will be called
the dm-weight of G since it is a generalisation of the d-weights
which arise in the pair-connectedness of bond percolation theory
(Essam 1971b).

All our results concerning P12”.m(G)’ and more generally
FW(G), are expressed in a general variable te(/*) which
contains the pg, and te variables as particular cases. The multi-
linear forms of D(G) and NE(G) in the P, variables are the
generating functions for the chromatic polynomials of graph

theory P(»G”) (see, for example, Tutte 1984) and what we call
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the partitioned m-rooted chromatic polynomials Pm(),GW
respectively. These polynomials in 2 , unlike F(>»G") and
FE(T,G’) , are not topological invariants and they do not vanish
for graphs with "dangling ends”. This is one of the disadvantages
of the use of the p—variable. In fact, we show that the t-
variable is more convenient than the p-variable in many respects.
The plan of this paper is as follows. First (section 2) we
define the model, review the known results for the partition
function and two-rooted functions previously obtained in the P
and t-variables (Kasteleyn and Fortuin 1969 and PF1
respectively), and show that they can be derived simultaneously
using the general tgh)—variable. In section 3, we derive two
alternative expressions for FlZu.m(G) (and nr(G)) which are then
expanded in the tego variables. In section 4, we study other
quantities related to Fw(f,G) and show that a knowledge of the
Fw’s and F°s allows the calculation of Z(G),er.”m(G) (and
r&(G)) in both the t and p-variables. The properties of Fm(>,G)
are also derived in this section. The resulting properties of
Np(t,G) and hence téq(t,c) are derived in section 5 and the
corresponding properties in the p-variable are also given.The
advantages of the t over the p-variable are given in section 6.
Finally the limiting case of bond percolation(}—)l) is studied

in section 7.
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2 MODEL ARD REVIEW OF KNOWN RESULTS

2.1 Partition Function expressed imn the t and p variables

Let us consider a graph G with vertex set V and edge set E.
We shall denote by |Vl and |E|] the numbers of vertices and edges
of G respectively; in general we shall denote by |U the number
of elements in a given set SU.

Let us associate with each vertex 1 of V a spin vector g8y of
length s which can take on one of r values e&(ci=1,2,..,7 )
which are the position vectors of the corners of a (7—1)
dimensional hypertetrahedron relative to its centre.

The hamiltonian of the I -state Potts model associated with
a graph G can be written in terms of these spin vectors as:

% (6) = - 2. J, Ae~A

ceE 3 (2.1)

where J, is the coupling constant between the spins 8; and 8 j
assoclated with the edge e. The sum in eq (2.1) includes all the
interacting spin pairs on G.

The partition function Z(G) associated with the graph G is

defined by

- K \;..'ﬂ (2-23)
2oy = B | ol = ko271
with

K = J, 73 (65 1/ R T) (2.2b)
2 2 B8
where tr; means sum over all positions of the spin vectors 8;{ ,

ieV.



CBPF-NF-078/85

Let G° be .a parttial graph of G, f.e., a subgraph of G with
vertex set V and edge set E°S E and let Q(67) be a function defined
on the set of such subgraphs. For example, Q{G") could be the
number of components, W(G”), or the number of indepeadent ctycles,
c(G”), in G-. Suppose also that u. (e €E) 18 a function defined on
the edge set E of G, and denote the edge set of the complement

of G with respect to G by EXE”, then we call

Q> - 2 Qe) Tu T (1 g )

(2.3)
G’CG’ eg' ¢ ENE!

the percolation average of Q relative to the u-variable. For 0$ue$1
( V&;e,z), this quantity 1s indeed the average over all
configurations in a bond percolatiorn model in which the edge e
has probability u, of being present independently of all other
edges (see, for example, Wu 1978),

If sZ-T—l and

-
Po = '1-"-9. KL (2.4)

then Z(G) can be expressed as (Kasteleyn and Fortuin 1969):
(p) W
Z({NC"): & IT AQP 2> (2.5a)

¢ € GIP
where the symbol p represents the vector (p1. »P25+++,P|g[) and

A(P) (?‘ 1) K

e = (2.5b)

In PFl the variable

t - 1- “?\Kﬂ- (2.6)
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was used instead ‘of Pe and it was found, for siml-1

2(x,6) = T AS) Y < >°>G

Let

» that

(2.7a)
\

vhere the symbol t represents (tl,tz,...,tlEl) and

(%) A) K -
A, -*-—4?- LUD e (-0 2 -

The variable t, vas also used by Domb(1974) in a series

(2.7b)

expansion analysis of the partition function. te appeared algo 1in
many real space renormalisation group calculations (Yeomans and
Stinchcombe 1980, Tsallis and Levy 1981, etc) and was called by
Tsallis and Levy (1981) the "thermal transmissivity” associated
with edge e.

The averages <>u’>6,p and < >C>G,t may be interpreted(PFl)
in terms of expected numbers of colourings and flows
respectively. The fact that the number of flows I3 a topological
invariant was shown in PFl to lead to considerable simplification
in the coefficients of the multi-linear form of <>F>G,t‘

We shall find in our analysis of the correlation functions
that there is a parallelism between formulae using the t-variable
and the corresponding formulae using the p-variable. This can be
seen already in expressions (2.5a) and (2.7a) for 2(G) and we

now show that these expressions have a common origin.

Using (3.2) of PF1l it is easily seen that for arbitrary /w :

ﬁ

'3 “‘ol*a = AL()»J[/* *;,(/&) 5(«&‘&&) + (1-’&9:*))] (2.8a)

where
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*fz(f*) = A= &F[-}k’* AL/(Lqﬂ (2.8b)

U+ (-1) =xp [- T, 22/ 0-0)])

and
K, AX -k A (r-0)
&9!..\): _4_{ L& {_ g/“ 4) 2 lg- } ] (2.8¢)
)L
Now
a La K, 2 .2
2(6) 2. .2 W PEREERCI (2.9)
o, =4 olM=4 REE '

and 1f we substitute eq.{2.8a) into eq.(2.9) and expand the product

we obtain: } -
z(fgu),_s)z’\EE P&(/*)) {T : *4& 56 Ee[ﬁyﬂ)‘

’ 5(.&‘&3)]' T [iog ] .

ge E\E:_l . (2.10)

Since the § functions impose the condition that two spins

linked by an edge have the same state variable of y we get:

2{t),6) - (HA (,0) 2 el el Wr(,k) T [-40]

G‘C G 2eE\E!

(2.11)
Now by Euler”s law (Harary 1969)

(@) = [e'l - (V] +w(e) (2.12)
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=11~

and hence

vl .
2(x{p), )= p ([:I;ﬁ&(/«) <@) R -

G, *(p)

Notice that 4f 52- >-1, then, from eq.(2.8b), it follows
that t,(1)= P and te(})- ta sand, from eq.(2.8c), that A (1)-A“»
and Ae(f)-ASQ Therefore eqs (2.5a) and (2.7a) correspond to the
respective cases /k-l and /¢-)‘ of eq. (2.13).

Expansion of che'product over-(l-tegg)) In the average

((T//A.) )G t(/*) leads to:
D(k{u),G)

with

h

<O % e Z Fiun,6') lTi;(,u) (2. 14a)

Flu N 6')

(3}

1}
le\ne"l w(e’) (6"
2 (-1 (_7_‘..) M (2.14b)
G's 6 »
where G" is a partial graph of G". Throughout this paper we shall
assume that the superscript " ~ " on any graph refers to any of
its partial graphs.

Eq. (2.14a) reduces for/M-> and s%= }-1 to the multi-

linear form of D(t,G) obtained in PFl, namely
DikG)z < 2> = 2~ F(re) W X, (2.15)
G;t G‘C(p

where F(MNG) is the flow polynomial of G( see PFl and references

therein) which 1s given by:
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_12...

Fine): 2 (f’l)‘E\E\ rele)

Cec (2.16)

In the case of/ﬂsl and g2= T—l » 8. (2.1l4a) becomes:

| o [e'| N
D((:,LG,)‘:' <77 = Z. (-‘!) P(?}G) H Pe (2.17)
(5|P G:£G> 2eg!
‘where P(),G) 1s given by:

g ! 2.18
P(re)- > (-1)' ')w(e) e
G't6
Eq. (2.18)is a well known formula (Birkhoff 1912) for the
chromatic polynomial P(>,G) of the graph ¢ with > colours. It
represents the number of ways in which we can colour the vertices
of G with )‘colours in such a way that no two adjacent vertices

are coloured alike.

2.2$ Pair Correlation Function in the t-variable

It has been proved (PFl) that the correlation function
between the spins 8, and 8, can be expressed Iin the t-

variable as:

T _
- - Q%
« N . -
4“4 2 >6,T (> {) tlz (th) (2.19)
where < >G means a thermal average (this should not be

confused with the average defined in eq.(2.3)) and

J'(,:& (%,6) = Ny, (k0)
(2.20)
D(rle)
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D{t,C) 1s defined in eq.(2.15) and N,.(t,6) 1s:

Npplki©) = P8, S (2.210)

where, in the defining equation (2.3),

1 if 1 18 connected to 2 on G~
B, ,(67)"

0 otherwise (2.21b)
1 and 2 are the vertices where the spins 8, ands, are
respectivély located and they are called the roots of the
graph G.

tnggG) is what Tsallis and Levy (1981) called the

"equivalent transmissivity" between 1 and 2 1in a graph G.
It represents the thermal transmissivity of a single equivalent
edge linking the spins 8; and s, which interact through an

equivalent (or effective) coupling constant Je (sée PFl).

q
In the same way as D(t,G), le (t,G) also has an
interpretation in terms of flows (PFl). The multi-linear expansion

of le(t,G) in the t-variable is (cf PFl):

N,{x.6) = > F;Z_(T‘ G ) Ay %,
G<CGE LeE!

wvhere the two - rooted flow polynomial Flz(},G) is a

(2.22)

topological invariant given by:
—— lENEY] CQ?)

F{l(T‘G) = Z-— (-1) T K{LCGIJ . (2.23)
Gt G

Flz(?,c) 1s related to the unrooted flow polynomial through

{(PFl) :
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Fl-a C?iﬁ): F(>~LGU?J') (2.24)
(r-1)

where g 18 an extra edge which links the roots 1 and 2. Hence
Flz(?;c) represents (see PFl) the number of proper mod-> flows in
(GUg) with a fixed non-zero value on g. In other words, Flz(},G)
is the number of proper mod-}» flows in ¢ in the presence of s
fixed non-null external flow.

Similar results were obtained for <’1"z>z in the
p-variable by Kasteleyn and Fortuin (1969). The results for the
pair correlation function in both t and p-variables could have
been obtained simultaneously by following a similar procedure to
that of 5(2.1). In the next section we shall do this for the m~

spin correlation functions.
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3 m-SPIN CORRELATION FUNCTIONS

The correlation function Flzu.m(G) among the components
811s 821s++» By of the m spins 8;, 85H,..., 8, along the direction

of e;, 1is defined as

T
n () = <A” OPRRY A"“4>G

2000
-4 S5 AA
= [2(6)1 _ﬁ\e A{ibﬂ.‘l ey Amq -Qx.P[ 2_ KQ_ A 3‘&

where in general the spin component along the direction of e is
gliven by:
- -
A = A . &

Aol ~ (i=1,2,...,m) (3.1b)

N
and the trace is over all positions of the {V| spin vectors 8 j
in G. The special vertices 1,2,...,m on which 8), B2,..., 8, are

respectively located constitute the roots of G.

In §3.1 and §3.2 we derive, by two different procedures,
alternative expressions, as well as their corresponding multi-
linear expansions, for Flz...m(t(/")’s) in the general l:(/b-)-
variable (see def. 2.8b). ‘Explicit expressions are given for
nz.._m(t,G) and Y&Z..m (p,G). In the first approach, by introducing

a "ghost spin” which couples with 81, 892,:04, B we obtain an

expression for Flzn.m (tgu),G) whieh involves partial

derivatives of D(tgg),G+) (defined in 2.14a), where ct is the
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graph obtained from G by adding an extra vertex which links to
the m roots. The multi-linear expansion of the numerator of

nl...m(c) in t{or p) involves flow polynomials(or chromatic

pelynomials ) of subgraphs of G+. The second procedure is an
extension of the one used in §2.1 for the partition function,
and plzu.m (G) is expressed 1in terqs of m-rTooted
partitioned equivalent transmissivities t;ﬁ (G). In §3.3 similar
expressions are found for the partitioned correlation functions
[E(G).The multi~linear form Iin the t-variable of the numerator
Np(t,G) of t;q(t,c) involves partitioned m-rooted flow
polynomials Fﬁ>( >,G’) whose importance has already been

stressed in the introduction.

3.1 Expression of IHZ“.-(G) in terms of unrooted

functions

One way of calculating r&z."m(c) is by

introducing a “"ghost spin” s which interacts with the m spins

4

81, 83,+.+, By through the respective coupling constants J1s J25.es,
+

and Jp. We shall denote by G the graph GUKI,m where Kl,m

is the star graph formed by £1Vg2-+-UBpy, 84 being the edge which

links s to 8; . Differentiating Z(G+) m times we get
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_l._ib Z *‘_._-'Uf* 2R N 2R —6%(6"')
aKM aKa_s—K-,\ (G) G (1_ Aﬁ)(z' 3)”'(““.%)2'(3.2) }_

Tracing over the positions of ’g we easlly derive that, at

KlﬂKzﬂ...ﬂkm-O:

2.... 2 2 ze&)

A2 9K, Ok
n‘lg...mCG) = A Ko % ’

2%(- ) (3.3)
G;P
qusz;'...: k;AZ'O

Combining eqs. (2.13), (2.8b), (2.8¢c) and (3.3) we get that:

™~

2 (F4,6) = (ﬁ__j“ [D(tgp)‘e*f)}“'x

« ; > (L-’ija' (l) _?2__ 2 .. D ()6

3= i iy, ...,Lﬁ}efna(ﬂ) a

(3.4)

K fu)-o
vhere é%(n) is the set of all possible combinations of j indices
{11’12,”"1j} chosen from M={1,2,...m} ; for j=0 there is only

. one term, namely ((}0q)~1)m D(Gf),in the second sunm.

Using the multi-linear form of D(t9¢LG) (eq.2.14a) and
(eq.3.4) we finally get that: '
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Mo (), ©) = (;ﬂ"“ ( Jf) }

n-\-'a % | ﬁ__
2 2 il T
< GZE_G % {Q;---.i..'.e%(u) (}* ) ()"') ﬂ(’_ee,

2 Flune) T N

GCG e eE (3.5a)

with the convention that for j=0, instead of ghost edges we have

a ghost site:

i [
F(PWTI Gua;‘o. .

Notice that for /u-‘;, only the term j=m contributes to

(3.5b)

= F1}*‘7h‘<5‘0 ')

r‘lz,. (G) and we obtain for s’= -1 that:
2 F(?* G uK ) [T T,
R geg cee!
F‘li...m\(tte) - (\!\- 0
> fre) [T x,
GG 2eg! (3.6)
. For /A-l and 52- )‘-I eq. (3.5a3) reduces to:
. -m/a
Mo p &) = iy

7> (N) a(ﬂ(‘l) P(?“GU3 ‘z)ﬁﬁe

X GSG 3= {iq, e }554(’0

Z (-OIE‘l P(?,G) '[T Pe (3.7a)

GG 2€E'
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where for the j=0 term :

) . _ . \ _ i
P(?*‘ GUg V.V %ia) = PO‘,GU') = TP(MG) . .
3:0
From eqs.(3.6) and (3.7a2) , we see that the form of
P12".m(c) is much simpler when expressed Iin the t-variable

than in the p-variable.

3.2 Expression of '1 (G) in terms of partitioned

2...m

eguivalent transmuissivities

An alternative procedure for deriving ‘12_“m(8} which
leads to results that generalise the ones quoted 1in §2.2 follows
along the same lines as the procedure used 1in §2Jﬂ The
combination of eq.(2.8a) with eq(3.la) leads to the fellowing

expression similar to eq.(2.10):

a0 [y, T 3 2 [

Gt(ﬁ-) G'cG ol1:1 °£|V‘1 fmd

AT PR ( m‘a)‘x T [4 -fg_f/u)l :
2gE' | 2e&\E!
(3.8)
Each G° defines a partition [P of the set M={1,2,...,m} of
roots into b ©blocks Bl’ By, +oe,y Bba where the
roots Iin each bdlock are connected in G° and roots beleonging

to different blocks are not connected. In the example shown in

Fig.lb, the partition [P° has two blocks 31-{1,2} and Bz-{3,4}.
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Carrying out the ol-summations for the spins which do

not belong to the rooted components of G° we obtain:

PP T Ve

< (}[/_&)N /“\c. >G *_9.‘.) (3.%a)

7 ]
- > \"8
1;:1 (&) = IR 2. R - (3.9b)
vea MY BE.IP‘ _ ?« ol =1 A

P (*@MJl(E) =

12... =

where

In definition (3.9b), QB 18 the number of roots 1in the block
B of the partitionp”.
"Since by symmetry (qd.ﬁe) 8 when summed onof is independent

of 3, 1t follows that:

T » P 1]
A Z_ f;_:_:l_!_) - A _7_ Z (_rax. 2 ) . (3.10)
Fool=t A Pl WA PY A

But from a straightforward generalisation, o an arbitrary value
of 8, 0f eq.(5.4) of PFl, we see that the flow polynomial for the

graph Rp consisting of two vertices u and v with QB edges in
B

parallel is given by: Q
8
FOR )= 4 NSRS
W= [ ()
Q

- 4(%4)% i i % T :

A L4 =z A (3.11)
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Combining egs.(3.9b), (3.10) and (3.11) we obtain that:

T (¢) = [2\" FOr T,

A2... ¢ >4 (3.12a)

where

F( 7} I@-> = '\\Y F( >l RQB) (3.12b)
Be P

is the flow polynomial for the "interface graph"IP\which has a
vertex for each b;opk of [° and the vertex corresponding to block
B 1is connectedléé‘an "external” vertex u by an edge of
multiplicity 'QB'

Notice that the general formula for F(MNR, ) can be derived

from eq.(2.16). It is given by:

Q-1 Q
FOnR )= G0 ) o)® w0 iz
r

(3.12¢)

Now in order to get an expression for ,12..m(G) in terms of
equivalent transmissivities which extends eq.(2.19), we need to
define a generalisation of the "connectedness indicator"”
(eq.2.21b), namely

1 if any pair of roots in the same block of [P’
is connected in G° and there is no connection

~6W\(G’) = among roots in different blocks.
(3.13)

0 otherwise
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where P"={B;, By, ...,By1 }. For a specific [P° we shall use
as subscript of Z{the actual roots separated by commas whenever
they belong to different blocks. For example in fig.(1lb):
512’34(6’)=1 because 1 i1s connected to 2 and 3 is connected
to 4 on G”, but '5123’4(G’)=0 because 1,2 and 3 are not connected
among themselves and 4 is not unconnected to the other roots.

Let us define‘P(M) to be the set of all possible partitions

of the setM={1,2,...,m} .For example, if M={1,2,3} then

P,2,3)={ e, ©,, ©5, &, Ps}
where
@, ={(1};12}; (3}
2y={{1,2}; (31}
®;={{1,3};(2})
®,=12,3};{1})
®s={{1,2,3}}.
Observe that, in this case, the following equality holds for

an arbitrary three-rooted graph G:

_ (3.14)
75“2‘3(6) " 612(3(6) * 2{43‘1(6) +*52M(G) +7):z3(6) =1

In general for an m-rooted graph G, the following identity

holds

Z T (6) = ] (3.15)
P
Pe (M)

Using identity (3.15) we can rewrite le.'m(G') (eq.3.12a)

as:
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- -1 Pe (M)

Substituting eq.(3.16) into eq.(3.9a) and interchanging the

T, . (&)= (3}\ 2_ 3,6 F(nT,)  cae

sum over G implied by the angular brackets and the sum over [P

we obtain:

M (K6) = (2N 5T <) 4 S 26,40 FO T .
™) pe () <(>//A)‘”ﬁ°>6‘tw

(3.17)

In fact we do not need to consider all the partitions [P of
P(M) since F(7§Rl)=0 (cf. eq.3.12c) and hence F(?ZIP)=0 for all
P which chtain blocks with isolated roots (i.e. with QB=1). If
we define FQM) as the set of all partitions of M into blocks each -

of which has at least two roots, then we can rewrite eq.(3.17) as:

Mg (K, G) = A—jm 2_ &I e) Fr5g)

A [YeF’(tﬂ

(3.18a)

where

Nﬁ’(tg/"‘)@)
D(‘té,o\) ,6) (3.18b)

with D(t&u),c) defined in eq.(2.l4a) and

K (k)

N@(‘t(/A)‘G) = ((7‘//«) /&C Zfﬁ )6““») ) (3.18¢)

Notice that for /A=>and s2=T-1 (and hence te(/—k)=te), t;?(t(/u),c)

becomes:
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*?(t\6> = N@(*JG’) (3.19a)
D(*,6)

where D(t,G) is givenmn by eq.(2.15) and Nm(t,G) is a

generalisation of Ny,(t,G) (eq. 2.21a) given by:

C (3.19b)

In the case when/#=1 and s2=I-1 (where te9M)=Pe)’ t;V(t9u),G)

reduces to:

tgv (f‘6> - N[P(P\G’) (3.20a)
D((:‘Cv)

where D(p,G) is defined in eq.(2.17) and qr(p,c) is:

Ne (p®) = < e b’ﬁ) > i (3.20b)
G

We shall call t:kt(fo,c).the partitioned m-rooted
equivalent transmissivity expressed in the tyo-variable since 1t
reduces , for P containing only one block (i.e., for b=1l; we
shall, throughout this paper,denote by b the number of blocks of a
partition [P) and tesM)gte » to the equivalent transmissivity
tf?”_m(t,c) among the roots1,2,...m which appears 1in Tsallis and
Levy (1981) as G{ti}.

1f we set 52 =/ -1 then eq.(3.18a) particularised for m=2,3
and 4 becomes respectively:

N (k) 6) = 42 (140, 6)

(3.21a)
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23(H/A)16) = (7‘—57-)(714\‘”2 'k;q (*(/A).G) (3.21b)

Moy (E),©) = (0% zm) (07" £, () )

A HG,6) + 1D, (660,6) & 40, (#,6)

13,24 (3.21¢)

It may be shown that the ( f—l) cartesian components
T T

<sle52xL>G' (1=1,2,..., M-1) of <{8).852¢
are equal, and wé'éee that eq.(3.21a) for te(/A)=te agrees with
eq.(2.19) obtained previously (PFl). It is also clear from
eqs(3.21), and more generally from eq.(3.18a), that F12”.m(G)
is proportional to tf?“.m(c) only for m=2 and 3; for m >4 the
m-spin correlation function necessarily 1involves several
partitioned m-rooted equivalent transmissivities.

Following the same procedure as was used for D(tQM),G) in

§2.1 we obtain that:

Np(K) 6) = 2 F (n0 ) T K )

(3.22a)
G'co 2ek’

where

\ M
FCP(/M?' Gl> = Z (—f)lE\E (:_?‘_

)w(eu) (G")
Gus 6! /).

M szP(Q,“)(.s.zzb)

Eq.(3.22a) for /u=7~ and s2= J -1 generalizes eq.(2.22) :

Npl£(©) = <2785 = 2 Frie) (T %

‘ G'<G 2eg  (3.23)
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where what we shall call the partitioned m-rooted flow polynomial

Fp ( 7',G) generalizes Flz('f,c) (eq.2.23) and is defined by:

Fne) = 2 () r @y (&) .

G'<G

(3.24)

For /A=1 and sz= T-l, eq. (3.22a) becomes:

NoGnG) = <P > = D () PGe) [T,
® P g
G GG 2cE

(3.25)

where what we call the partitioned m-rooted chromatic

pelynomial 32(7‘,6) is defined by:

(e'l \
w (G")
P@(T‘ G) - 2 (—1) I ( 75@(6|> ’ (3.26)
| GG
Combination of eqs.(3.18a), (3.19a), (3.23) and (2.15) leads

to the following form for P12.. (t,G):

oy 3] T FOVD) 06 (l f}

I (t 6) = (M) __c'c6| pe Bn)
2.l eGey M+,

G{EG: ¢eg!

(3.27)

where we inverted the order of the sums over  and G” since F(MNI )

does not depend on G~.

From eqs.(3.18a), (3.20), (3.22) and (2.17) we get in the

p-variable:
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Y
2 42 om0 e T g,
2 e®

<6 (Pe PM)

Z H)ld P(ne) (T e

|
GG e € (3.28)

3.3 Partitioned Correlation Functions

In the previous subsection (eq.(3.21)) we saw that the

correlation functions PlZ(G) and [123(G) were proportional to the
. c e

equivalent transmissivities tlz(c) and t1?3(G) respectively.
However P1234(G) involves the partitioned m-rooted equivalent
~ issivities t19 34(G), tig 9,(6) and t1§ ,4(G) in addict
transmissivities t; L34 > 13 24 an 14,23 n a tion

e
to t1?34(GL Here we 1introduce the partitioned correlation
functions q?(G) and show that a knowledge of the partitioned
equivalent transmissivities also determines the rE(G) and vice-
versa.

Let us define FQ(G) in terms of the spin components of

eq.(3.1b):

r(e) £< T o S

Bel® ieB G

(3.29)



CBPF-NF-078/85

-28-

where the component index dB is the same for all spins 8y in a
given block B but different for spins in different blocks (i.e.
&%fd%f ces fdik). By symmetry of the Potts model the value of
this correlation function is independent of which components are

chosen for each block, for example:

P(6) = ¢ar a = AALSNT (3.30)
1,2 ) < 1" 11>6l1.“ <Py P >G

where the comma indicates merely that different components of the
spins s, and s, are involved. Flzu.m(c) referred to previously
is the case when [P has a single block.

In order to relate FE(G) to the partitioned equivalent
transmissivities, it is convenient to introduce a "ghost"” spin

for each block and define:

T
+ /
\—\o (6W> = ﬁ D' /?B' X (3.31)

BelP KeB > +
N 6@

where sp is the"ghost“spin for block B and the thermal average is

relative to the Hamiltonian of G but includes averaging over
states of the b "ghost”™ spins. The graph G; is the graph G
augmented by an extra vertex for each block and a "ghost”™ edge
connecting each vertex in block B to the extra vertex for that
block. In the case of a single block (b=1) GE reduces to the
graph ¢t tntroduced in §3.1. The subscript O indicates that no
interaction is associated with the "ghost" edges.

The method of §3.1 can be easily extended to give the
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generalisation of eq.(3.5a) by noting that ‘l(GE) may be obtained
by introducing an interaction parameter for each "ghost" edge and
then using eq.(3.3) with G+ replaced by Gé. The multi-linear form
. ‘Po(t(/u)’cz’) is similar to the one of PlZ...m(t(/")’G)' the only
difference being the proportionality constant QA/>) which should be
replaced by 9d7jb. In particular, Q(GE) is expressed in terms
of flow polynomials and the te variables by eq.(3.6) with C’UKl’m
replaced by the subgraph of q; having the edges of G° together with

all of the "ghost"” edges, namely

PO('}C'GQ) - (T—1) /& Z— F(T GU‘Q‘Q‘B‘U K‘!leu“. UK4)QBQ_) IT

GG geg
2_¢fre)y g
Geo 2ec! (3.32)

This result shows immediately that:
TL(GE) = 0 if P has a block with a single root (3.33)

since in this case all the required flow polynomials are for
graphs with a "dangling” edge and are, therefore, zero.

For m £3 the only partitions having blocks which contain at
least two roots are the ones with a single block (previously
discussed) and we now use eq.(3.33) to determine FI,Z(GL

'}2 3(G) and ﬂ 2 3(G) in terms of F 12(G) and P 3(G) In general

niep < b 2 Z<VT»@:. y

"8 BelP 4ieB A G

Y

:?—Q"im Z T’ T A >T (3.34)

4t g7t N\ Bel® «ep G
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which 1s a linear combination of partitioned correlations
(eq.(3.29), but terms in which some of the of are equal

correspond to coarser partitions than [P. For example:

r(65,) = M r (e Y T (0|

(3.35)

and using eq.(3.33) gives

\“Ma(@ = —-F:'_,L(e) /(r-q) : (3.36)
Similarly

f‘u\3 (6) = - {1123 (G)/(T-O (3.37)

and using

ner L) - >~3{ P (e) s ranln, (@)

i|2\3 2\3

+ 1y ,(6) (s (O ]+ (-0 (-2 q‘%(cv)g

(3.38)
together with eqs.(3.33) and (3.37) gives
- n G - - . .
f“d‘%(é) = 4ZBC ) /(7‘ D (r 2) (3.39)

The FE(G) with m £ 3 are therefore expressible in terms of m-
rooted equivaient transmissivities using &gs.3.21) together with

the above results. The generalisation of eqs.(3.35) and (3.38) is
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+ -0
()= T P‘Ze(’(n) (r)szf‘ F@\(e)

\
EZH’ (3.40a)

where

(?\) = rr-1) .- ()-Qv'+4> (3.40b)
QJ'\

and Pé} whenever every block of [P is contained in a block of PP-.
The relation (3.40a) may be inverted (see, for example, Rota 1964

and references therein) to give

| -
ra(e) = 4+ 2 /A(@\ce) r T (eh)
0)9,‘ R € P(M)

(3.41a)

where/MﬂPﬂw) is the Mobius function of the lattice of partitions

of m elements. Explicitly

(—0%’%(2! )aB (3‘.)%. g ((M-D,‘)a"“ 1f R°C P

/A.(EP’,[P)= (3.41b)
0] otherwise.

In the case that P” is the partitionil,Z,”.,m}then ay 1is the
number of blocks in [P with 1 elements. Otherwise a; is determined
in the same way but identifying elements in® which are in the
same block of ®°. For example, 1if ©®°={16,2,35,4,7,8,9} and
P={1269,34578} then /A(@',P) = - 2131,

We now consider the gemeralisation of eq.(3.18a) to

partitioned correlation functions. Equation (3.9a) is the same
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except that 1if [HZH.m(G) is replaced by ‘;(GE) then Ty, . must

o
be replaced by Tp where

T (6)— I T W ’H’ 7;)3'/?3‘. (3.42)

. ——
)Qr-%%’ BelP 4ieB N
and sp! 1s a representative spin of the block B"y of the
A
partition ®° of the roots of G induced by G which contains root
i, and thé trace is over the b+b” spins which occur in theproduct.

Using the extension of eq.(5.4) of PFl to arbitrary s shows that

1—‘;(6\> - <_;’3:T>M F'() [PEE> (3.43)

where IE,W' is the bipartite "interface graph” having a vertex
for each block in P and P°, and for each B of P an edge for each
root i€B linking it to the block B of [P which contains i. For
example, 1if m=4, ®={12,34} and P"={13,24} then Ip p- is a square
with F(T,IQ’E')= 7-1. Continuing to follow the derivation of eq.
(3.18a) we arrive at
T (), 65 ) = ( > > r‘“f’(u/@ e) FOr T o)

A R e M) < (3.44)

For example, if m=4 then

IXC (2D G-07 007 07\ [£3
n (Gum ) ﬁ)‘i (7_1')1 -0 () O-D tulw(e)
T,(S% ) U -0 G 007 O=0) | | 1%
RSN I W NP N G B o B i \1:'0-230.

(3.45)
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Iaverting the above matrix we get

eqs.(3.19a),

\\ 12%53(: )‘/

f 413“@\
tds(©)

11
:<,:ﬁ) A
Kig aq(c’) A

/ e ~(r-1) -(r-1)

) 0Z3ren)

~(r) A (PZ374d)

Lt
\a(h ) 4 L

Combining eq.(3.46) for sz=

(2.15), (3.23) and (3.32) we arrive at

CBPF-NF-078/85

~(r-1)
A

1

(*3rs ﬂ))

(3.46)

/'l(e: \\
net..)

12,34
¥ ( 43.24)

\Dﬁ%‘a )

»-1 and /A=> together with

(r&) = L} (o) F(ruky) -0 Fneur,ue )

v FOr @uQ3unZH>kF(7‘GUZ Ue )]} (3.47)

e F(F‘Giu-l ve

113\
»
™,
and
chs‘ﬁs (26) = >
h
{
where edﬁ
see therefore that

N I£Y)

) + F(reu 2 u:zm),) }

($’6’U)é=1’2’3’4)

F1234(/\,G) and F (>,G) are

A3 YS

combinations of unrooted flow polynomials.

(3.48)

__1__{ -(_7‘-1> F(7‘,6 v th) ¢ (0 3?«-1) F(?“GU%‘GUQUS)_,,

(ef,A=1,2,3,4) 18 an extra edge linking  and /3 . We

linear
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4 THE PARTITIONED m—~ROOTED FLOW POLYNOMIALS qr(),c)

We next turn to the study of the coefficients Fp (>G7)
which appear in the expansions of Flzu.m(G) and qP(G) in the tg,
variables. We derive their relationship with the unrooted flow
polynomials and we give an interpretation for F123(73G) in terms
of the number of proper mod-7* flows under fixed external flows
(section 4.1). We show that the unrooted and the partitioned m-
rooted flow polynomials are very important since from them we can
calculate the partition function and m-spin correlation functions
in both t and p-variables (section 4.2). We also give the graph
theoretic properties of Fw(7‘,Gﬁ (section 4.3) which will be

used 1in forthcoming papers (PF3 and PF4).

4.1 Relationship between FIP( >,G) and F( > ,G)

Comparison between eqs.(3.6) and (3.27) leads to:

F()‘ Gu K M\) = ZJ‘ F(/\_‘ I@) FCE’CI\‘6> (4.1)
| pe P(t)

which we shall derive in a forthcoming paper (PF4) by an
independent procedure (namely, by the extended subgraph
break-collapse method).

Observe that eq.(4.1) particularised for m=2 reduces to
eq.(2.24) since homeomorphic graphs have the same value of F(}G)
(see property (iii) of F( »,G) in PF1l).

In the particular case of m=3 eq.(4.1) leads to:

“/{7_3(7\6) = F(T\GU K‘J) /<>-1)<>-2)

(4.2)
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From the above relation, we can interpret F123(7,G)'as being
the number of proper mod-> flows in Gygyiugougy with fixed non-
zero and different values ?& and g& on two of these "ghost"” edges, say,
on g; and g, (observe that thé value of the flow on g3 1s then

automatically given by - ( Qi+ §2)).Eq.(4.1) particularised for

m=4 gives:

Flr ek ) = (F%3re3) (-0 Fasy (716) +

Z
" [ () + oy (206) 5, 101)

(4.3)

which combined with eq.(3.48) would lead to eq.(3.47).

We see thus that F1234(7}G), unlike Flz(hG) and F123(§GL is
not proportional to F(},GvKl’m) but involves flow polynomials
of other graphs as well (cf. eq.(3.47)), and we were unable to
find an interpretation for F1234(>,G) in terms of the number of
proper mod-) flows under fixed external flows. For general m,we
expect that eq.(3.44) may be inverted and, by following the same
procedure used in the derivation of eqs.(3.47) and (3.48), it
would lead to a linear relation between partitioned m-rootedflow

polynomials and unrooted flow polynomials.

4.2 Relationships between ﬁr()‘,G) and other quantities

In this subsection we shall prove that we can calculate
e G
rank function W (x,y) and its partitioned extension Wp(x,y) in

terms of unrooted andpartitioned rooted flow polynomials.
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From eqs.(3.26) and (2.12) we can write Pp( 7,G) as:

- E| — =
A 6= »" < (M)l 2 e 8 (¢) (

G'eG 1-r

E\E'
< | 1=_1
(- )

Notice that the sum over G° on the right hand side of

X

(4.4)

eq.(4.4) 1s exactly <7~CD’IP>G’t calculated at te=t=(1--7~)-1

(V(e € E ). Therefore, taking into account its polynomial form
(eq.(3.23)), we finally get the following relation between
P[P(T,G) and FE(T,G'):

ACYSE » lE'L(t) (r-1)

GG

lene'l

F@(/\l c')
(4.5)
Combining eqs.(4.5) and (3.25) we get:

1 _vi-1et
Np(pe)s 2—460 >

G'¢G

> 0 o RG] Teh

. eekt
G <6 (4.6)

X

It has been pointed out(Essam 1971a) that the Whitney rank

function WG(x,y) contains , as particular cases, P(}, G) and

D(p,G). 1t can be shown that F()‘,G) and D(t,G) may also be

obtained from WG(x,y) as follows:
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F( 7 G) = (—1)‘& NG(—’},—-7> (4.7)

D(*,6) =z (1—t)lE‘ We [ £ &

— |
-

-k (-%x

. (4.8)

We shall, therefore, introduce a partitioned m-rooted rank
G
function Wm(x,y) which, similarly to WG(x,y), is related to
G
Pp(?G), Np(p,G), Fp(7,G) and Np(t,G). We shall define Wp(x,y)
by:
\

G n(E') (e
Wo(xw)z x ¥ (c) (4.9)

e Y/ F % P

- G'<G

where r(G”) 1is the cocycle rank of G° given by:

n(e') = VI - w (") . (4.10)

Notice that for X(P(G')=l (¥6<G), wg(x,y) reduces to the Whitney
rank function.

Using eqs. (2.12), (4.9) and (4.10) we get that:

G el _c(e) .
N@(x\ Tx,> = 62523 > T \6@(6) (4.11)

Now, let us derive the relation between WS(X,TX) and
Fm(7;GW. In order to do this, we multiply and divide the

right hand side of eq.(4.11) by (1+x)lE|. We obtain, thus:

S \ te'
V\)s(t‘}L): (4+x)lc‘ 2 7‘6(6) KL?Q':') ( x) (4* o

G'e<G {+% {+x

lene'l

(4.12)
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The sum over G° in eq.(4.12) 1is Jjust Np(t=x/(l+x), G). Using

eq.(3.23) we finally get that:

G lg‘ —— HEW
M@(Z\?L> = ('1*\-1\) Z__ F (,\ G\) _x 3 (4.13)
cee T {+

Eqs.(3.23), (4.5), (4.6) and (4.13) show that the knowledge
of ﬂw(fﬂf) for all partial graphs G of G allows the calculation
of Nm(t,G) . PE(?;G) s Np(p,G) and WS(x,y=7x). If we make
3&(G')=1 for all G°S G we get similar formulae (by dropping the
subscript ) relating F(/,G°) to D(t,6) , P(MG), D(p,G) and
WG(x,y=>xL We conclude therefore that frél unrooted and rooted
flow polynomials we can ultimately calculate the partition
function and the m-spin correlation functions for any given graph

G in the t or in the p-variable.

4.3 Properties of qr(),c)

Similarly to the two-rooted flow polynomial(see PFl), q?(7;G) is

a topological invariant which has the following properties:

(i) Deletion-contraction rule. If the edge e of G is not a loop

then:
Fne)= FR(h 6 ) - FOr ) (4.14)

where Gf and GE are obtained from G by contracting and deleting
the edge e respectively.
We can prove eq.(4.14) by considering the definition of

Fp(7,G) (eq.3.24) and splitting the sum over G° into two parts
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according to the presence or absence of the edge e, namely:

I BVEl
ere) = 2 () r @ 2y @)
G'<6 c'e6
2¢ € 2¢ €' (4.15)
5

Noticing that in the first sum ¢(67)=c(G" ), |E’|=|E(G;Z)|+l,
ZYQ(G')= KQ(G'Z;) and that in the second sum all the graphs
G” are equal to G’S, we finally get eq.(4.14) (remeﬁbering that

IEl=lE(GE)|+1=lE(G2)I+1L

(i1) If at least one root of a block of the partition [P is not
connected in G to the other roots in the same block then
Fp(T,6) = O.
This follows from the fact that 1f the roots in each block
are mnot connected in G then, by deleting any number of edges in G
(thus forming G”), this fact continues to be true. Consequently
5&(G’) vanishes for all partial graphs G of G, and hence

F?(>)G) vanlshes also (cf. eq. 3.24).

(1ii1) If Gl and G2 differ only by some number of isolated non-
rooted vertices then FQ('T,GI) = Fpl( 7,G2).
This follows trivially from the definition of Fm(},G)

(eq.3.24).

(iv) If G has a non-rooted vertex j of degree one (i.e., 1if G has
a "dangling end”) then FE(},G)=O.

This follows from the application of properties (i)
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(wvhere e 1s the incident edge at j) and (i1i) (where G1=Gg

and G2=Gé ).

(v) If H and L are disjoint graphs or have at most one vertex in

common and if all the roots belong to H then:

Fe (7 wul) = FOy L) Fp O H).

This follows immediately from the definitions (2.16)

and (3.24).

(vi) If e is a loop then qP(7,G)=()—1) qr(r,cf).

The proof follows along the same lines as the one
for property (i),except for the fact that the first sum in eq.(4.15)
is rewritten in terms of G’? .Taking into account that,if the
loop belongs to G°, ¢(G”)= c(G'S’ )+1, 3&(G')= q?(G'f ) and

IE’|=|E(G’§)|+1 », we easily arrive at property(vi).

(vii) Edge doubling. If Gog is the graph obtained from G by
replacing the edge e by the double edge ef then FE(>’Gef)

satisfies the following relation:

— = - ~ 2

T (™ GQ&> = (7-2) FCP()‘ G) + (r1) F—CP(I'GR. >'(4.16)
This property extends property (v) for Fij(see PFl).

Proof: If we apply eq.(4.14) to the edge f of Geg and

¥
then property (vi) to (Gef)f we get

Fo O, )= (10 R0 &) - o).
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Substituting Fm(},cg ) of eq.(4.14) into the above

equation we finally arrive at eq.(4.16).

(viii) 1f G1 and G2 are homeomorphic (see PFl) then

F@(?;cl) = FW(7,G2).

Proof: Let us suppose for the moment that Gldiffersfrom
G2 by only one non-rooted vertex j pjevl) of degree two. If we
apply property (i) (where e is any of the two incident edges at
j) then (G12l= G2 and (Gl)z will contain a non-rooted vertex of degree
one. Applying property (iv) to (Gl)f we finally get that F[P(T,Gl)=
=Fm(7;G2L If G1 differs from G2 by any number Q_of vertices of

degree two then we just have to repeat the above procedure

successive times.

All these properties, except (i1), continue to be valid for
F(MNG) (see PFl). Another interesting property of F(NG) is that
it vanishes for a graph which contains an articulation edge (see

property (i) in PFl).
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5 PROPERTIES OF RELATED QUANTITIES

In this section we derive the properties of the
configurational averaged quantities and of the partitioned rooted
chromatic polynomials which appeared in our expressions for
m-spin correlation functions. These properties will be used 1in
extensions of the break-collapse method (Tsallis and Levy 1981)

which will appear in forthcoming papers (PF3 and PF4).

5.1 Properties of Np(t,G)

The following properties of Ne(t,G) can be deduced easily

from the corresponding ones of Fm()3G) using eq.(3.23):

(1) The break-collapse equation (BCE) is given by:

, S
Ne (ki0)= (=) N, (K 67) w1 Nk 6])

which extends the BCE for Nij(t,G) (see PF1l) and is a particular

case (Q=)Ft&; PQ=te) of eq.(2) of Kasteleyn and Fortuin (1969).

(1i) If at least one root of a block of the partition [P is not
connected to the other roots in the same block on G then

Nw(t,c)=0.

(ii1) If G, and G, differ by any number of non-rooted vertices of

degree zero then Nm(t,G1)=Nm(t,G2).

(5.

1)
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(1v) If the edge e 1s incident at a non-rooted vertex of degree

- ¥
one then WP(t,G) M?(C,Ge).

(v) If H and L are disjoint graphs or have at most one vertex in

common and if all the roots belong to H then:

N (£, Hul) = D(4,L) N (k1) -

(vi) If e is a loop them Np(t,G)=[1+(P-1)t_] Np(t,G2 ).

(vii) Edge doubling.If Gef is the graph obtained by replacing the

edge e by the edges e and f then:

N (£, 61%) - [ﬁgr t+ (r-2) %, {'@] [ME(t,C{) —M[P(t‘(-}f)}
Ye(ro %, t%} Ng (k, ©2)

which extends property (v) for Nij(t,Gef) in PF1l.

5.2 Properties of ﬁ:kt,c)

D(t,G) does not depend on the roots of G by
definition (cf. eq.(2.15)) and its properties, which were given
in PFl, are similar to those of Nm(t,G). The properties of

t;kt,c) can be easily derived from the ones of “m(t,c) and D(t,G)

(cf. eq.3.19a), namely:

(1) the BCE for t?(t,G) is:

t;b(t\é\ = Wt M@“UGE) + 1, Np (5G)
U- 4D ,62) + £, D (%, &) (5.2)
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e
which extends the BCE for tlzu.m(G;t) stated by Tsallis and

Levy (1981).

(i1), (ii1) and (iv) Np may be replaced by t;i in the

corresponding properties for Ngp(t,G).

(v) I1f H and L are dis joint graphs or have at most one vertex in

common and if all the roots belong to H then:

t;ﬁ(’(\\—\uL) = t?’ (%, #).

(vi) 1If e is a loop then é?(t,G)=tgkt,G:).

5.3 Properties of qp(},c) and P(»,G)

QP(>;G) has the following properties:

(i)Deletion-contraction rule. If the edge e of G is not a loop

then:

P(re) = Po(ne?) - P (nef

(r.e) = P(C o (he7). .
Proof: If we split the sum in eq.(3.26) into two parts

according to the presence or absence of e we get:

(&) G
AGNIE 2 (- oo B(6) + Z—UB el B p(6)-
G's6 G'¢e Gb‘ (5.4)
2 e Lét
Following along the same lines as in property (i) of

F‘P(T G) and noticing that W(G7)=w(G", ) if e €E” we easily

arrive at eq.(5.3)
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(11) If at least one root of a block of the partition [P is not
connected to the other roots in the same block on G then
PLP(7‘,G)=0.

The proof i1s similar to the one given in property(ii)

of Fp(2,G).

(111) If G; and G, differ by IVol-non-rooted isolated vertices

then Pm(?,c1)=7l"° Pp(7,G,).

This follows trivially from the definition (3.26).

(iv) If e is an edge incident at a non-rooted vertex of degree
one (i.e., e is a "dangling end”) then

The proof follows from the application of eq.(5.3) to
-3

the edge e and subsequent application of property (iii) to Gg-
(v) If H and L are disjoint graphs and if all the roots belong to
i then:
- PN ™)
P,Cr, wul) = PO L) Bp(rh).
This follows trivially from the definitions(2.18)

and (3.26).

(vi) If G contains a loop then Pp ( »,6)=0.

The proof follows immediately from eq.(5.4) where now e
is a loop. In this case the first sum becomes simply -Pw(7;Gz)
while the second sum continues to be qP(?“,GE) and hence ﬁP(7;G)

vanishes.
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(vii) The replacement .0of a multiple edge by a single edge does
not change Pp( 7,6G).

Proof: Suppose that G- contains, among other edges, two
edges e} and ey in parallel between the vertices 1 and J. If we
apply eq.(5.3) to, let us say, the edge e; then it follows that
Pp(7,G) = PE(},Gz) since d: contains a loop (which comes
from the edge €y collapsed) and consequently q?O§G3)=O

(cf.(vi)).

(viii) Insertion of a vertex of degree two. If Gfg is the graph
obtained from G by replacing the edge e by two edges f and g

in series, then ﬂp(7,Gfg) satisfies the following relation:

P (1, 662,3) = (0 B0y e2)- (0 6).

(5.5)

¥Yhe proof follows from the application of eq.(5.3) to
the edge f of Gfg and subsequent application of property (iv) to
(Gfg)é - It is clear from eq.(5.5) that, unlike F@(>5G) (see

property (viii) of §4.3), P@(},G) is not a topological invariant.

All these properties, except (i1), remain valid for

P(MG) if the subscript [P is ignored.

5.4 Properties of Nw(p,G), D(p,G) and ﬁ;kp,c)

Using e€q.(3.20b) and the properties of Pp ( 7,6) we can

easily derive the following properties of Np(pP,G):
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(1) The break-collapse .equation (BCE) 1is given by:
® ¥
N_EE‘(P\G’): (4'&_) NQ(P\G&.) + PQ N@(f’t G_g_) (5.6)

w
which {8 a particular case (Q= ba v&;pﬂ-pe) cf eq.(2) of

Kasteleyn and Fortuin (1969).

(1i) TIf at least one root of a block of the partition [P is not

connected to the other roots in the same block on & then

%(P,G)-o.

ii1) 1f &, and G, differ by |V,| non-rooted vertices of degree
1 2 0

zero then Np(p,G,)= )‘VOI Np(p,G5).

(iv) If e is an edge incident at a non-rooted vertex of degree

one then Np(p,G) = {?‘-(? -l)pe] Nm(p,GE’L

(v) If H and L are disjoint graphs and 1f all the roots belong

to H then:

Np(p,HVL) = D(p,L) Np(p,H)

$

(vi) T¥ e 18 a loop then Np(p,G) = Np{p,Go ).

(vii) Edge doubling. If Gef 1s the graph obtained by replacing

the edge e by the edges e and f then:

Np(P,Ger) = (Pe*Pe-PePs) (Np(p,65 )-Np(p,62)] + Np(p,c2 ) |

(viii) Insertion of a vertex of degree two. If Gfg is the graph
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obtained from G by replacing the edge e by two edges £

and g in series, then:

Nﬂ? (P‘ G@?j) = [/\-r(?‘-o (rﬁ+r’8) -l'(?“- l) "-’f P?-l Nﬁ? ([’,Gf)+
+PGFB' N[P(P ‘Gf) .

Notice that D(p,G) has properties similar to the ones
of Nw(p,G) (just replace N? by D) except property (11).
Consequently (cf eq.3.20a) 1t 1s easy to prove that the
properties of t;q(t,G), which were listed in §5.2, remain wvalid

fort;ﬂ(p,G).
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6 ADVANTAGES OF t OVER p

We now compare the variables ty and Pe- First of all,
the varlable te> unlike the p-variable, has the important
physical 4interpretation of being the correlationmn function
Fij(t,e) between the components 841 and sjl of the spins 8, and sj
of the graph consisting of a single edge e.

Second,concerning high-temperature multi-linear expansions
of the partition function and m-spin correlation functions, t is
much more convenient than the p-variable. In fact, 1If we compare

properties (iv) and (viii) of FE(T,G) and Py ( 7,6) as well as the

corresponding properties of F(»,G) and P(}G), we Bee that:

a) graphs with "dangling ends” do not contribute to the

mnulti-linear forms of IH

2. o (€,6) (eq.3.27), ﬂm(t,c)

(see eqs. (3.32) and (3.41a)) and of 2(t,G) (eqgs.(2.7a)
and (2.15)), while they do countribute to the multi-linear
forms of [y, _(p,6) (eq.(3.28)), [ (p,6) and
Z(p,G)(eqs.{(2.5a) and (2.17)).

b) because F( 7/ ,G) vanishes also for graphs with articulation
edges, only the graphs in which every edge belongs to a
cycle contribute to the multi-linear form of Z(t,G), unlike

the case of the p-variable.

c) the multi-linear forms of f{znom(:,c),np(:,c) aud Z(t,G),
unlike those of Flzu_m(p,G),rb(p,G) and Z(p,G), are
determined essentially by the topology of G, the insertion

of unrooted vertices of degree two giving rise to a
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trivial change(i.e. replace t. by tgtf).

Notice also that the alternative multi-linear forms of
Flz.”m(p’c) (eq.{3.7a)) and nr(p,c) have more terms to be
calculated than the corresponding ones of Plzu.m(t’c)
(eq.(3.6)) and [E(t,c). Furthermore, a comparison between the two
expressione for Flz".m(p,c) (eqs.(3.7a)) and (3.28)) leads to a
relation between unrooted and rooted partitioned chromatic
polynomials which 18 rather complicated. Consequently there is no
simple interpretation of Pm(?;G) even for the gsimple cases of
P, 7,G) and P, 7,G), contrary to what happens for rooted
flow polynomials.

As we shall see in a forthcoming paper (PF3), there is a
powerful procedure for calculating [lz_um(t,c) and f}(:,c) which

does mnot apply to [}2'_'m(p,9) and HT(P,G)-
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7 THE PARTITIONED m-~ROOTED CORNECTEDNESS IN

BOND PERCOLATIOR ( M-o1)

Let us consider in this section the /=1 limit which
corresponds to the bond percolation Problem (see Kagsteleyn and
Fortuin 1969). In this limit, both the flow Polynomial and the
chromatic polynomial, by their definitions, vanish except for

the ‘null graph N|yj| with |V] 1solated vertices, i.e:

Fhe)s Pe) = (6, N, )

(7.1a)

where

2(6,Njy)) = (7.1b)

) othervise .

From eqs.(2.15) and (2.17) it follows immediately that:

(7.2)

D(t‘e)} = V(pG)| =1 Ve
)-1 ?:1

and from definitions (3.19b) and (3.20b):

Ne(k, 6)) = N(p@) | = <B,5 = Cfe)
>=1 =1

(7.3)

where the variables t, and p, become identical and equal to

(cf defs (2.6) and (2.4)):

1 = r’e.l = 1- Q‘—K‘-

& »1 (7.4)

T:i
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(7.4)

Combining eqs.(7.2), (7.3), (3.19a) and (3.20a) we get
that:

t ¥ (.6 _-.t;'D(PlG)\ = C(©) .
>

(7.5)

r=1 A

qw(c) generaliseg the pair connectedness CIZ(G) = < 3E2)G’ a
function which 1s well known in bond percolation theory. CE(G)
represents the probability of the roots of G being connected
according to the partition @P(fi.e., roots in the same block of [P
are connected and roots in different blocks are not connected).
We éhall call C?(G) the partitioned m-rooted connectedness. The
coefficients of the series expansion of Clz(G) in the variable
defined in eq.(7.4) are known as weak pair connectedness welghts
or "d-weights” for bond percolation (see, for example, Essam
1971b). These d~welights are equal to the two-rooted flow
polynomials evaluated at >} =1, Therefore, we shall call the
coefficientse of the series expansion of CE(G) the qr—teights

which are given by (cf. eq. (3.24)):

e\ e'l
cl@(e) = Fm(‘l‘é) = Z (—1) 512(6‘) . (7.6)
. Geo
Observe that for 'BQ(G)- tgz(c), eq.{7.6) reduces to eq.
(3.19) of Essam (1972),
The properties of dW(G) can be easily deduced from the

ones of Fm(f,G) by making I=1 and using eq.(7.la). Notice that
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dW(G)vanishea’ﬂm graphs having:{a) Components without roots or
Just omne root (cf(v)); (b) loops (cf(vi)); (c) "dangling ends”
(cf(iv)). The zraphs which have non-zero qP-weights are the ones
in which each component Gi has no loops and is a one-irreducible
multi-rooted graph, i1.e., the deletion of any vertex of G1
leaves it with at least one root in each of the components of Gy
which result from the deletion of this vertex. Observe also that,
for .?fn,(c)- 312(6), the above Properties are in agreement
with well known properties of the d-weights (Essam 1971b).

The properties of qm(G) follow easily from the ones of
qw(t,G) or Nm(p,G) by making Mel,

It 1is worth emphagizing that when the partition
contains only one block, then Clz“m(G) gives the probability
that all pairs of points {1,3}) (1,3=1,2,...m;i+j) are connected.
Arrowsmith (1979) proposed, 1in the context of directed bond
perccolation, one way of calculating d12“.m(G) which involves a
sum @f directed weights over all possible orientations of G. The
evaluation of Fi2...m¢ 7,G) at =1 provides an alternative

procedure for calculating d12...m(c)‘

Acknowledgment: One of us (ACN de M) thanks CNPq for financial

support.
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Figure Caption

FPigure 1. Example of a.partial graph G’(fig.Ib) of a graph
¢ (fig.la) with roots 1,2,3,4 (indicated by open circles) partitioned
into b”=2 blocks: B ={1,2} and By={3,4}. The missing edges

are repregsented by dashed lines and the non-rooted vertices by

full circles.
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