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ABSTRACT

The Fokker-Planck equation which describes the angular
momentum't:ansfer in deep inelastic heavy ion collisions is solved
by a stoéhastic simulation procedure. The fusion cross section
calculation is discussed. The calculations show that the critical
orbital angular momentum does not play such an special role as in
the deterministic case. The results of the angular momentum trans-
fers and their fluctuations are calculated and compared with ex-

perimental results for the reactions 86}(::-+15“?l

165Ho+148 165H0+176

Sm at 610 MeV,

Sm and Yb at 1400 Mev.

Key-words: Deep inelastic heavy ion reaction.
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1 — INTRODUCTION

The use of the Fokker-Planck (F.P.) egquation in deep
inelastic heavy ion collisions was first proposed by Nbrenbergl.
Since then, the usual procedure for solving this equation has been
the expansion of the probabilistic distribution function in its
moments up to the second orderz. Such a procedure is inadeqguate
near the critical angular momentum. This inadequadecy can be
easily justified by remembering that the critical angular momentum
characterizes an instability region of the underlying deterministic
system. This has been exhibited in numerical solutions of the F.P.
equation as obtained by Brosa and Cassing3 for the case of two-
-dimensional phase space.

In this paper the F.P. equation is solved by a different
procedure. We made use of the fact that the results of this
equation are the same as predicted by the deterministic system
subject to Langevin forces of adequated strengths. In this way,
the distribution function was obtained by calculating nearly
18,000 orbits and cbserving the resulting distributions of the
pertinent variables in the asymptotic region. The underlying
deterministic system used to describe the reactions is the same of
reference 4. The strengths of the Langevin forces were fixed by
imposidq the Einstein's relations of the brownian motion. The
temperature is calculated by imposing that the dissipated energy
heats the compound system treated in the free Fermi gas model
approximation. The only parameters free to adjust the experimental
data are the friction coefficients, already fixed in reference 4.
Thus the simulation of the F.P. equation is done without any further

adjustments.
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We obtained a reasonable agreement with the experimental
data for the angular momentum transfer in the reactions 86Kr+1548m
at 610 MeVS, 165Ho+1485m and j65H0+1?6Yb at 1400 MeVG. It is
worth mentioning that we did not observe a sharp transition bet-
ween the deep inelastic and fusion mechanisms when observed as a
function of the initial orbital angular momentum (LO). As a matter

of fact in the 86Kr+154

Sm reaction at 610 MeV for which the critical
angular momentum is 197 t the deep inelastic proceés still compete
with the fusion mechanism even for values of the initial orbital
angular momentum as low as 40 k.

In section 2 we give a brief description of the relations
needed for the derivation of the F.P. equation and the method used
to fix the temperature. In section 3 we give a description of the
actual model employed in the present work and we indicate how to

proceed with the simulation. In section 4 we exhibit our results

and a discussion is presented in section 5,

2 - THE FOKKER-PLANCK EQUATION

We assume H{g,p) to be the hamiltonian which describes
the collective modes of the system that couple to the inelastic
channels of a heavy ion collision. The effect of this coupling is
assumed to be described by a stochastic force whose mean value
gives the friction force and the fluctuating part is taken as a
Langevin force. We therefore may write the following equations of

motions
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where Fij is the friction coefficient tensor and zi(t) is the
Langevin force. We further assume that zi(t) is normally distributed

with

<1i(t)> =0
and

<zi(t)£j(t')> = 2 Kij §(t-t') .

Using these assumptions we derive the F.P. egquation for

f{q,p;t), the probabilistic distribution function for the collective

motion of the system7'8:

R 9H 3f
+ [£,H] = 39, [T '"""apj £+ Ky ““_apj

mlm
rrirn

Imposing that the Beltzmann distribution,

—-—

Hlz

is the equilibrium solution for the above equation, we obtain the

Einstein's relation:

f13 7 T Tiy

with T playing the role of the temperature of the system. The
temperature of the system is fixed by the relation:
t
U(T)=J r,, 2B 9 g¢e
-

13 Py Bpj
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where

U(T) = % 2

is the internal energy of the compound system treated as a free

Fermi gas9 and A its mass number.

3 - THE SIMULATION

From now on we assume H is given by

2 2
H = 4 ( 2 + L2) J1 J2 + V(r)
=3u P 2 +211“212 r

where V(r) is the same potential energy given in reference 4.
The friction coefficient tensor is calculated from a
Rayleigh dissipation function F also defined in reference 4 and

which we reproduce here:

2 ,» 1

(a_R+R 1 R_+R

F = % B F{r)[fz +or
172 172

As a direct consequence of the equations of motion the
total angular momentum of the collective modes is conserved in the
absence of Langevin forces. We will restrict these forces in order
to preserve :this conservation law. In this way the orbital angular

momentum of the system can be obtained from the relation

L = LO - (J1 + Jz)
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where LO is the initial angular momentum of the system.

To generate the Langevin forces we integrate the equations
of motion by finite differences in steps of At = 0.5 x 10_235.
At every step the Langevin forces are substituted by random impulses

obtained from a normal distribution with zero mean values and

covariance matrix (oij) given by

The temperature T in the above equation is calculated

along each trajectory using the eguation:

,U(T(E)) = Q% () = - Q(t) +

where_Q(t) is the energy lost along the orbit. The inclusion of the
additioﬁal term Qz(t)/Qo, the energy loss through the vibrational
mechanism, is justified in reference 4.

In the case under consideration, we observe that the
radial Langevin force is not correlated to the other ones.

Therefore we set

with
g, = 0 = 27 B T(r)At ’

where U0 is a random normal variable of zero mean value and unit
variance. The impulses given to J1 and J, can be obtained in a

similar way if one takes care of the correlation between them. We

have then10
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R.R
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The random wvariables U1 and g, have the same properties of UO'
We have simulated an average of 50 orbits for every value

of L, starting from Ly = 40 t to the grazing value for each

0
reaction, in unit steps of h. In this way we simulated %~ 1x104 orbits
for the 86Kr+1545m case, v 2>(104 orbits for the 165Ho+1485m case

4

and ~ 2.3x10% orbits for the '%7Ho+176

Yb reaction. For each orbit
we stored the asymptotic walues of L,J1,J2,Q* and 8§ . We also kept
the collision time for each orbit defining it in such a way as to
have zero value in the grazing orbit case.

These data were analyzed with the help of a statistical
package in which the statistical weight (W) for each orbit was

obtained through the relation:

2rbAb

Wi(b) HTiET
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where n(L°3 is the total number of orbits for the given Lo+ b the
corresponding impact parameter and Ab the step of b corresponding

= 1h.

to aLo

4 - RESULTS

Fig. 1 exhibits the deep inelastic and fusion differential

cross sections as a function of the initial angular momentum (Lo)

86 154

for the Rr+ Sm reaction at E = 610 MeV. We observe rather

Lab
small values for the fusion cross sections over the whole L, range.
Above 220 K and up to 276 h  (the grazing value of LO}, the fusion
cross section is practically zero. The critical value of Ly (LCR)

in this case is 197 h. One observes that the transition of the

fusion cross section in the region of Lcr is not as abrupt as it
could be expected from a deterministic calculation. Therefore, one
cannot just take the critical value of the angular momentum to
determine the fusion cross section. In our case we adopted a limiting
time T for the deep inelastic mechanism to occur. In Fig. 1

FUS
21

it was taken to be Tegs = 3.5x10"“'s. This time was obtained

through the following argument. In the reaction under consideration
the maximum temperature reached by the compound system is approxi-
mately 3 MeV. We estimate the single-particle widths at this
excitation energy to be close to 210 keV. The corresponding decay
time is then approximately equal to 3X1621s. We take this time as
a typical maximum time for the deep inelastic mechanism. The total
fusion cross section (UFUS) predicted by the corresponding
deterministic system is 1180 mb. If we had taken To;¢ = 2.5x10" s
21,

we would have obtained o = 541 mb. For t = 3.5%x10°

FUS FUS we
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obtained GFUS = 244 mb. We observe that OpUS is rather sensitive

to the value of 1 . One of the reasons for expecting such a

FUS

sensitivity is that we make use of the proximity potential energy
in our model. This potential energy gives a small binding for the
di-nuclear system which easily breaks by the thermal agitation.

As a result the longer the value of Tpus the smaller is Orus

Fig. 2 exhibits the mean value of the total angular mo-

mentum transferred to the ions (<J>) as a function of the Q*, for

the reaction 86Kr+1548m at 610 MeV of laboratory energy. The

open dots were obtained from the experimental data5 assuming
<J,> = 14 k. curves b and ¢ exhibit our results for two different

values of Trus under the assumption of the rolling mechanism

(a2 = 0). One observes that <J> is quite insensitive to the value

of TFUS

{az = 0.5) and Tpus = 3.5x10

simulation is somewhat sensitive to the sticking parameter and

. Curve a exhibits our results for the sticking mechanism

215. We observe that the stochastic

this hipothesis seems to give a better agreement with the experimental
data. A similar effect was not found in the deterministic case4.
Another point worth mentioning is the fact that the simulated
values of <J> goes up to. Q* = 250 MeV while in the deterministic
case, due to the fusion below LCR = 197 k, we could not obtain pre-
dictions of <J> above Q* = 150 MeV.

Fig. 3 shows the standard deviation of the total angular
momentum transfer (GJ) as a function of Q* again in the reaction

86 154
-+

Kr Sm at 610 MeV. The open dots represents the experimental

data5 assuming I, = 14 K. curves b and ¢ correspond to the simu-

_ -21 _ -21 :
lated values for Trus = 3.5x10 s and Teus = 2.5x10 s respectively

under the rolling assumption (02 = 0). Contrary to what happen with
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<J>, the standard deviation Oy is more sensitive to the value of
Teus * Curve a corresponds to the stickirg assumption {a, = 0.5) and
Tpus = 3;5!10—215. It is worth mentioning that the sticking assumpt-
ion contributes both to <J> and Oy by inc;easing their values.

In the Figs. 4 and 5 we exhibit both the values <J-

165H0+148 165H0+176Yb

and 0. as a function of Q* for the Sm and

J

reactions at 1400 MeV of laboratory energy. The open dots represent
the experimental data6 for <J> . The simulated data (solid curves}
reproduce essentially the deterministic results previously
obtained®.

The results exhibited in Figs. 6,7 and 8 for the case of
the reaction 165Ho+1488m at 1400 MeV allow us to discuss the use
of D* as an experimental indicator of the value of L. Fig. 6 shows
the mean value of L, {(<Ly>) for the simulated {(solid curve)} and
deterministic (dotted curve) cases. The averages were taken over
30 MeV Q* intervals in a way similar to the one utilized to analyze
the experimental data. One observes that the two mean values do not
differ in any substantial way. Fig. 7 shows the standard deviation
of the initial angular momentum (ULO) as a function of Q* also for
the simulated (solid curve) and deterministic (dotted curve) cases.
We observe here that although for the deterministic case the fluct-
uations lie around 5 h in the simulated case they have values of
~ 40 H, ji.e. close to ten times larger than in the determiniétic case.
This suggests that the use of the correlation between Q* and L,
predicted by the deterministic case should not be taken too seriously.
This conclusion is reinforced by the result of the correlation
coefficient (p{LO,Q*)) exhibited in Fig. 8. There one observes

that for the simulated case the correlation coefficient is small

(approximately -0.2) over most of the range of Q*, while for the
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deterministic case this coefficient is obviously -1.

5 - CONCLUSIONS

The existence of the critical orbits invalidates the use
of expansion in moments of the probabilistic distribution functions
near these critical regions of the phase space. The simulated
approach is insensitive to ‘such critical regions and its accuracy
is dependent only on the amount of available computer time.

For the specific simulation presented here we were able
to show that the fusion cross section is insensitive to the
critical angular momentum but very sensitive to the maximum time
allowed for the di-nuclear system to decay in deep inelastic
channels. We believe that this lack of sensitivity has been greatly
enhanced by the particular choice of the nuclear potential energy
we made. If we had used a potential enerqgy that gives a stronger
binding energy to the di-nuclear system, the fusion cross section
would have increased, approaching its deterministic value. The lack
of experimental values for the fusion cross sections for the
reactions  studied did nét allow us to further study this phenomena.
This result can be put in more general terms by saying that the
simulated results are sensitive to the value of the transport
coefficients over the extended region of the configuration space
contrarywise to what happens in the deterministic calculations which
are sensitive only to the surface region.

It is worth mentioning that in the way the results were
stored we eould easily obtain plots of any single or double

differential cross section and contour plots of the double differential
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cross sections.
The increase of computational facilities created mainly
by the advent of microcomputers permits that simulation of
stochastic processes such as the one presented here to be done
at low cost. In our opinion, simulations such as this one should
be carried out in the future for the analysis of experimental
data..
We would like to thank Profs. J. Lopes Neto and R.deu@ek)

for reading the manuscript.
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FIGURE CAPTIONS

Fig. t — The total (a}, the deep inelastic (b) and the fusion (c}

differential cross sections as a function of the initial angular

momentum for the 86Kr4154sm reaction at 610 MeV. The horizontal

scale is the initial angular momentum in units of h (Lo = zOE).
The vertical scale is the do/dﬂ,0 in mb. The fusion cross section
—21s

was obtained by assuming a maximum limiting time Trus = 3.5x10

and under the rolling assumption (a2 = 0).

Fig. 2 - The mean total angular momentum transfer <J> in the

86Kr+154

Sm reaction as a function of the energy loss (Q*). The
horizontal scale is Q* in units of MeV and the vertical scale is
the mean total angular momentum transfer in units of K. The open

dots dre the experimental data of reference 3 assuming <J,,>= 14 K.

Curve a is the prediction of our model with the sticking assumption

{ay, = 0.5) and Teus = 3.5X10_21s. Curves b and ¢ are the same as

a but under the assumption of rolling mechanism. Curve b assumes
-21 =21

Tpus = 3.5x10 s and curve ¢ Tpus = 2,.5x10 S.

Fig. 3 - The same as Fig. 2 but refering to the standard deviation

of the angular momentum transfer in the 86Kr+154Sm reaction.

Fig. 4 - The mean value <J> and the standard deviation 3 of the

total angular momentum transfer as a function of Q* for the 165Ho+

1485m reaction at 1400 MeV. The open dots are the experimental
data for <J> of reference 6. The two curves are our results for
the <J> (solid curve) and 03 (dotted curve). The horizontal and

vertical scales are the same as in Fig. 2.

Fig. 5 - The same as Fig. 4 but for the 165Ho+176Yb reaction at

1400 MeV.
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Fig. 6 -~ The mean of the initial angular momentum as a function of

165H +14BSm reaction. The mean values were taken for

Q* for the o
every 30 MeV Q* intervals. The solid curve refers to the simulated
and the dotted one to the deterministic calculations. The horizontal

and vertical scales are the same as in Fig. 2.

Fig. 7 - The standard deviation of the initial angular momentum,
for 30 MeV Q* intervals, as a function of Q* for the same reaction
of Fig. 6. The horizontal and vertical scales are the same as in
Fig. 2. The solid curve corresponds to the simulated and the dotted

one to the deterministic calculations.

Fig. 8 - The correlation coefficient of the LOQ* pair of variables
as a function of Q* for the same reaction used in Figs. 6 and 7.

The horizontal scale is in units of MeV.
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