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ABSTRACT

This paper shows that the conditions of
application of Opechowski™s theorem for double groups
of subgroups of 0(3) are directly associated to the
structure of their commutator groups. Some characteris

tics of the structure of classes are also discussed.
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I.  INTRODUCTION

Forty-five years ago Opechowski (1940) defi
ned the double groups and established his now famous theo -
rem which describes their class structure. The theorem
states that when a finite group G, subgroup of the three-
dimensional rotation group SO(3) has among its elements two
rotations by an angle w through mutually perpendicular axes,
the number of classes of its double group &* is less than
twice the number of classes of G.

in this paper we show that when the non tri
vial element z of Z, (the group of the center of SU(2)) be-
longs to the commutator group 6*' of G*, the theorem of Ope
chowski applies. In this case, the order of G*' is always
an even number and it is isomorphic to G'*, the double
group of the commutator group. On the other hand, we also
show that if G*' ~ G'* holds, the group G contains at
least two rotations in m around mutually perpendicular axes.
Furthermore, if z does not belong to G*', this group is of
odd order and it is isomorphic to G'

In section Il we define a double group of a
finite subgroup of SO(3) by means of its relation with cen-
tral extensions.

In section III the commutator group and

some of its properties are treated.
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| The main problem of this paper is discussed
in section IV, where an extension to improper groups is al-
so considered.
In section V, a simple treatment of the
crystallographic point groups is presented using the re-

sults of the preceding sections.

II. THE DOUBLE GROUPS

The elements of the group SO(3) are speci -

fied completely by a rotation angle in the range 0 < 6

A

™
around a rotation axis n. Rotations by angles 6 > m can
always be treated in the same interval using the well-known
relation R(2w-6,-n) = R(6,n)

From the irreducible representations (irreps)
Dj(e,ﬁ) » 0 £ 8 <227 , of the group SU(2) it is bossib]e to
obtain a set of matrices which forms an irrep of S0(3). Ta
king into account that for 6 > m we can write Dj(e,ﬁ) =
(—1)2j Dj(Zn—e,-ﬁ), every set of parameters (6,n) is asso -
ciated to two matrices Dj(e,ﬁ) and (-1)2ijj(6,ﬁ) . For
J half-integer, these matrices form the so called double -
valued representations of SO(3).

Let R(ekz’ﬁk) denote the elements of a fi-
nite group G < 50(3), where O,p = 2T/, , L = Thooiuny,-1,
and ﬁk is the unitary vector in the direction of the Ny, =
fold rotation axis. Opechowski (1940) has defined the dou-

ble group G* of a group G of order |G| as the abstract
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group of 2|G| elements isomorphic to the matrix group of e-
lements { tDj(ekz’ﬁh)} for half-integral j

An alternative definition is possible if we
rewrite the set of matrices as Dj(e,ﬁ)Zz, Z, being the
group with elements I = Dj(O,ﬁ), -1 = Dj(Zn,ﬁ). It can be
immediately shown that Dj(e,ﬁ)Z2 is a matrix group isomor
phic to SO0(3). On the other hand, as the set of D matrices
forms a faithful irrep of SU(2) for half-integer j, the e
lements D‘j(e,ﬁ)Z2 form a group also isomorphic to the fac-
tor group SU(Z)/Z2 and then we have S0(3) ~ SU(2)/Z2
Therefore, since G* must be a finite subgroup of SU(2) for
G < SO(3), the isomorphism G*/Z, ~ G must hold and G* s
a solution of the central extension of 22 by G

Calling R(an/nk,ﬁk) the elements of
G < S0(3), the double-valued representation of & for j=1/2,
is given by

/2 (2ne/ny 7y) = ¢ {oocos(ne/ny) +

i3 .n sin(ne/n,)},

where oo, is the 2x2 unit matrix and o are de Pauli matri -
ces. Since in this equation np is the order of the element
g, € G, there is only one involution within the elements of
G*, i.e. the element D1/2(2n,ﬁ) = z , which corresponds to
n, = 1 in 6. Caride and Zanette (1985) have shown that in
order to H = G* it is necessary and sufficient that H

should have only one involution and H/Z2 v G . From this ,
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we can state the theorem of Opechowski in the following
form. Let (a,b) € 6 < SO(3) be two rotations by = around
perpendicular axes. Since z is.the only element of order
two in G* and it is mapped onto the unit of G, the orders
of the pre-images a,B and aB of a, b and ab under the ho-
momorphism G*/Z2 ~ G may be fixed by the relations

a? = B2 = (aB)?2 = z . Then, z may be written as

z =a * B ! ap and one thus has that o and az (and B and

Bz) belong to the same class in G* ,

IIT. THE COMMUTATOR SUBGROUP

Let G' be the commutator subgroup of G.
Since G/G&' 1is abelian and the canonical mappihg of G on
to 6/G' is a homomorphism, the one-dimensional represen

tations r, of G are given by

r,(g) = v, (g6') ,

where Y, is a representation of the factor group. The
number of one-dimensional irreps is |G/G'].

Since G' is self-conjugate, it consists
of complete conjugacy classes CL and the same is true for
the set of generators of @' consisting of the commutators
(a"b~ab), a,b € G . For if an element x = a~* b~' a b
belongs to the set, its conjugate g x g = x9 -

(a9)"* (b9)"* a9 b9 also belongs to it.

Let us now define the operator
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S = a b ab in the group algebra of G. It can be
a,beG

written as S = Z\)(i)slé , where SL is the class sum o-

I3

L

perator SL =z: x and v(4L) 1is the number of times
xeC ;
L

the conjugacy class CL is contained in the generator
set of 6' . In other words, v(4) is the number of times
that an element of CL can be written as a commutator.
Using the orthogonality property of
the irreps of G, Burnside (1955,p.319) obtained the fo-

1lowing expression

Vi)

(17161 22 X (a7 b) (e,
J:a9

sl L x'ic) 7 xm
i

where xf(C) denotes the character of C in the representa
tion j§

Applying the formula to S"= S...S ( n
times) we find that the number of times an element of
the class CL can be written as the product of n commuta

tors is

vo i) = 16l Lodte)/nd Pt
1

a formula due to Van Zanten and de Vries (1973).
As it will be seen in the next sec-
tion, this expression is the key to obtain the structure

of the group G* from the structure of G*' or vice-versa .
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IV.  RESULTS AND CONCLUSIONS

Let us denote by rj the irreps of the
double group G* of G < SO(3). Since z belongs to the
group of the center of G* and from Schur's lemma, rj{z)=

2

AjI, where I is the unit matrix. But z®= 1 , therefore

Aj= +1. When Aj= +1 we have the so called integer irreps
and when Aj= -1 the half-integer irreps.

There is a very simple relation 'be -
tween the irreps of G* and those of G. Taking into ac-
count that

+xJ (1) for single-valued irreps

XJ(Z = .
-xJ (1} for double-valued irreps

we can now rewrite vh(i) for n = 1 and { = z as
vy (z) = |G*| {2 x number of irreps of & - number of irreps of G*}.

This equation shows that every time the number of irreps
of G* is less than the number of irreps of G, it is pos-
sible to write z as a commutator. ConsequentTy,

z=08a " B"Y for at least one pair of elements

(e,8) € G*. Then, from the homomorphism 6*/Z,~ & which

maps z onto the unit element of G we have that there are

two elements, say (a,b) € 6 such that ab = ba and hence,
either a and b are two rotations around the same axis or

they are two rotations by w around mutually perpendicular

axes.
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It will now be shown that if aB = Baz,
the rotations a and b cannot be around the same axis. For
if this were so, there would be an element d € G, such
that a = d“ and b = d% , for some integers k,2 .If &§ and

6z are the pre-images of the element d, the elements o =

2

¢z and B = & z, of G*, with (zK,zz) € Z, , should be

K
such that

L K
2 «Zg = 872872 = Ba ,

H

o3
A

N

o
Py

N

1

o3
A
+
Py

N

N

0B

which is contrary to the hypothesis. Thus, a and b are
two rotations by 7 around mutually perpendicular axes.

Since z is the only involution of §* it
is also the only one involution of G*'. Then, if we ar -
range the elements of G*' in pairs of the type w,w'1,
those two which are not among them are the unit element
and z. Thus, when z € G*' we can also say that the order
of G*" is an even number.

Now Tet us suppose that v1(z) =0 and
vn(z) # 0 for n>ng >1, i.e. z € 6*' but 6 does not
contain two rotations by 7 around mutually perpendicular
axes. Then, the number of irreps of G* is twice the num-
ber of irreps of 6. Moreover, since 6* is a central ex -
tension of 22 by G it will have two conjugacy classes C(a)
and Claz) with the same number of elements as Cl(a) of G.
Then, in order to satisfy the orthogonality relations,the
character table of G* must have the structure of the table

corresponding to the direct product G «x 22. This fact



CBPF-NF-072/85

would double the number |G*|/|6*'| of one-dimensional irreps
of G* with respect to G. Hence, the isomorphism G'* v G'
must hold. But since ze G*' , we have G*"/Z2 ~n oGt and
the isomorphism G*' ~~ G'* must hold. This contradiction
clearly shows that if z e G*', v1(z) # 0 always.

When 2z ¢ G*' the theorem of Opechowski does
not apply and the character table of G* appears to be one
corresponding to a group that can be written as a direct pro
duct. However, if the group G, subgroup of SO(3), is of e-
ven order it has at least one element of order two. Hence ,
if a and oz are the pre-images in G* of that element, they
must be such that ol = (az)2 = z , and therefore it is not
possible to write G* as G x 22 . If G is of odd order, we
can write

G vC

2m+1=1>

- <l ,

Zm+1

and therefore, only in this case we can write its double

group
* 2m+1 _ 2_
Comap = < U llu =z, 2= 1 >
as a direct product given by
* 2m+1
Comyy = < uz || (uz) =1>x1,.

Let us now see how these results apply to im
proper subgroups of 0(3).
When G is an improper group not isomorphic

to a direct product of a group by the inversion, the prece-
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ding discussion is also valid since G* has only the element
z és involution. Improper rotations belonging to these
groups which do not contain the inversion explicitly, can
be written in the form 1ig, where g is a proper rotation of
even order. Thus, the order of the pre-images of ig in G*
is always twice the order of ig

When G is an improper group that can be
written as G = H x Ci where H < SO(3), G6* is isomorphic to
H* x €. (Altmann, 1979). In this case, the results obtained
can be directly applied to H. Furthermore, although in
this case G* has three involutions, i, z and iz, the re -
sults are still valid because the inversion cannot be
written as a commutator and therefore z is still the unique

element of order two of G*'.

V.  CRYSTALLOGRAPHIC POINT GROUPS

We now show that if G' is of even order,G*'
is of even order and then 2z € G*'. This was to be expected
since if the order of 6' is even there is at least one ele-

ment of order two in G' and one of its pre-images, either o

or az must belong to G*'. But since a2 = (az)2 =z , it

follows that =z € 6*' and then 6*' ~ G'*
Point groups with commutator groups of even
order for which the Opechowski theorem applies are

Can,v “Don,d “Dan 3 Dgpp v Dgpy xCp s T T =TxEC,

0h =0 x ci 3 Td VO o Y and Yh =Y X Ci
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When the commutator group is of odd order
we have two alternatives: either 6*' ~ G' or G*' A~ G6'*.

First case includes the cyclic groups C Cn h and S2n s

n’
since the central extensions of 22 by them are also cyclic
and consequently, G*' v G' ~ C1

Let us now see the remaining crystallogra

phic point groups which are isomorphic to Dn or to Dn><Ci.

The dihedral groups can be presented (Suzuki,1982) as

D, = < p,e || o" = e? = (pe)? =1 >

and their double groups (Opechowski, 1940) as

*

Dn =< U,V Il un = V2= (uV)2= Z, 22= 1 > R
where u = (p,1) and v = (e,1). Thus, the corresponding
commutator groups are
D, = < o® ] o"=1> and D:' e L T

Therefore we see that if n = 2m+1,

=<u21|,(ju2)2m+1 =1 >

1 _ 2m+1_ LR
<o 1 OB 1 ng

and consequently , the commutator groups of the double groups

~v D and DZn+1,d ~v Dy g X C; are isomor

of Const,v 2n+1

phic to their commutator groups, i.e. for these groups

G*' v G'
When n = 4m+2 we have

* 2 2\2m+1 2
Dyr,o = < u” | (u) =z, z2° =1
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*
Since z ¢ D4é+2 the double groups of the point groups

~ D ~v D D

Cans2,v ™ Ponst,h ¥ Dapyz 304 Dy v Dygpip x € Wil
have a number of classes which is less than twice the num
ber of classes of its corresponding groups, and G*'n G'*.

Finally, we can say that in order to have
a character table for G* of the type corresponding to a
direct product of G by 22 it is necessary and sufficient
that |G*/G*'| = 2 |G/G'|. This is so because vzl s
by definition a positive function. Moreover, since the u
nit element can always be written as a commutator, v, is
also a non decreasing function of n, i.e. vn(z) §=vn+7(z)
and since 1im v (z) = |gx|2n+T {2|l6/6"| - |6*/6*"'|} we

n-o

see that if [G*/G*'| # 2|6/6']|, v, (z) #0
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