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ABSTRACT

We propose an invariant path integral approach for the Einstein
gravitation theory suitable to the analysis of the  associated
functional measure problem. We use the proposed formulation to

analyse the phenomenon of quantum gravity in two dimensional space times.

Key-words: Invariant path integration; Fanctional path measure;

Einstein theory; Induced two dimensional gravity.
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1 INTRODUCTION

The path integral for gravitational interactions has been
discussed several times in the past and most recently the im-
portant problem of the gravitational path integral measure has
been reexamined (1’2’3},

In this paper, we intend to propose an approach for the quan
tization of Einstein's gravitational theory in the framework of
path integrals suitable to the analysis of the above mentioned
problem of the paths' local measure.

The basic idea in our discussion (*) is the introduction of
a Riemann structure into the functional manifold of the metrical
field variables compatible with the invariance group of the
theory and, then, consider the associated partition functional
as an infinite dimensional version of a invariant integral in a
vRiemman manifold (°). As a result we will not need to introduce
the "ad-hoc" insertion of the Faddev-Popov unity resolution
into the path integral measure in order to extract the gauge
orbit volume (%), since we will be able to implement this cal-
culation in a pure geometric way. So, in the proposed frame-
erk, it is not necessary the use a posteriori of a constraint
hamiltonian path integral (7} to justify the Faddev-Popov pro-
cedure, besides our approach leads to a natural and adequate
local path measure. Finally,.we analyse in the proposed frame-
work the phenomenon of the gravity in two dimensional space

times produced by quantum effects.
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I INVARIANT INTEGRATION

We start our analyses by briefly reviewing the basic results
of the theory of invariant integrals in Riemman manifolds (°).

Let T be a homomorphism of a compact Lie group G in the iso
metry group of a given Riemman manifold M. Let wus consider

the integral.

j £(x) [du] (x) (1)

M

where f(x) is invariant under the action of G (£(T(g)x) = f(x),
Vg €G) and [du] is the measure in M induced by its Riemman met
ric. The orbit of a point x € M(the sub manifold of M formed
by all the points {T(g)x},9€G) will be dehoted by 0(x). The
called orbit quotient space M/G can be realized as a sub-mani-
fold of M formed by all those pointsof M which are not related
by a group element. The measure induced by the M-Riemman met-
ric in M/G is denoted by [dfi] and that induced in O(x) by
[Cav]. Now we can state the basic result of the theory (°). We
have the following relationship between the integral (1) and an inte-

gral defined only over the orbit quotient space M/G

If(x) [au] (x) =ff(x) [au] (%) .v(x) (2)

M M/6

with

[av] (x) (3)
)

v (x)

]
N\—“

0(
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We remark that [[dv](x) is a G-invariant measure over the
group G, since O(X) can be realized as a manifold "copy" of G.

This result is fundamental for our analysis.

Another result of differential geometry which we will use
is the coordinate expression for the induced metric in a given
sub manifold of . Let {ghj(x)} denote the matrix of the met-
ric tensor in M with 1 < h,j<N (N being the dimension of M).
Here, x belongs to a # coordinate domain. Let H be a sub mani-

fold of M described by the parametric equations
X. = R, (z 4
F J(E) (4)

with {z,} (1< £€<k ;k<N) belonging to a domain P (coordinate
oR.
domain for H). Assuming that the matrix [A]] (z%) =[_—~L](z )
ik 9z, 1L
has maximal characteristic k in D, the metric {ghj(x)} induces

the following metric in H

(ind) - [ hp,iq
{gpq (zk)}—igth A }(zk) (5)

with the volument element given by

Car](z) = ’\ﬂ:et{g;;“a’ (zR)} .dz!...dz¥ (6)

After having displayed the basic results of invariant in-
tegration we pass to the problem of the path integral quantiza-

tion for the Einstein theory.
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ITI A QUANTUM PATH MEASURE IOR EINSTEIN THEORY

Let us start our analyses writing the Hilbert-Einstein ac-
tion for the theory of gravitation defined in a d-dimensional
Minkowski space-time manifold E with fixed topology and without

boundary (see Ref. (8); for the case of an open space-time).
= 1 . D
s[{g,g(x)}] = 1_6”_‘5! (V-g R) (x)d”x (7)

where the field variables are given by those metrical tensors
{gas(x)} that can be defined in E,i.e.:compatible with its
topological structure, -g(x) =det{guv(x)}, R(x) being the
scalar of curvature induced by {guv} in M and g the Newton
gravitational constant.

" The starting point of the Feynman's path integral quantiza
tion for the Einstein theory is the continuous sum over histo
ries under the influence of a field external source Juv(x).
e%SI:{guv}(x)]+;ﬁilJ g (x).jpv(x)/?g—(x)dnx

2[5, (xN= ] g MY
¢ Z]{gwm)} (8)

The precise meaning for the continuous sum (8) is achieved
by introducing a path measure in the functional space of -all
pcssible field configurations, (denoted by M»I:du](guv(x),swj1
that (8) can be written as

i i LHV D
=s[e. . (x)}] +—:[g (x).37 (x)/-g(x)d x

2[5, ()] =j CanJ (g, ()& W LA

Hv ‘ HV E (9)

M
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The fundamental problem in Eq. (9) is to define appropriate
ly the path measure since the Einstein action posseses the

physical invariance under . the action of the group of the

coordinate transformations in M (the Einstein general relativi

DIFF

ty principle) denoted by G (E) :
x> 2 (xh (10)
atMxY poHy, 32V (xY)
9, (0 » gl g oM ix )).ﬁgs—l = (Lgg(x)uv (1)

DIFF

INF (E)) is given by

and which in its infinitesimal version (G

sx" = e”(xM) (12)

My o e u
Gguv(x ) (V]J v + Vveu)(x ) (13)
wherelva the usual covariant derivatives.

This invariance property lead us to treat the above path in

tegral as an infinite dimensional version GDIFF(E) - fnvariant

integral in M(see Eq. (1)).
S0, we intend to use the fundamental relation Eq. (2), Eq.

(3) in its functional v esion in order to - get its expression

DIFF

in the physical path manifold M/G (E) , where we can implement

for'instance:za Feynman diagramatic analysis. As a first step
to implement the invariant integration theory we have to in-
troduce a metrical structure in M compatible with the group
GDIFF(E). By following B. de Witt! analysis we introduce a

metric (functional) tensor y(“v;as)l:gzp(x)] on the functional
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DIFF

path space M for which the actions of G (E) are isometries.

The unique functional metric which the above condition is given
by the following expression (4), (9): (the so Called De Witt

metric).

ds;, = ! de/:E(g) [ de'/-—g-(X') . (59'1“)) (x).

..Y(]J\);O«B)(X, X')‘(agaB) (X') (14)

where the tensor density y(“v5“8)(x,x') is explicitly given by

(c # - 2

(D),
y(HVS0B) (o vy = 18 (x=x") (guag\)B +cg~“"‘g°‘8) (x) (15)
V2 /-g(x')

and (ngp)(x) denotes the functional infinitesimal displacements
on M. It is instructive to point out the condition c #-—% in
Eg. (15) insures the positivity of the De Witt metric Eq. (14).

After introducing a Riemann structure on -the path functional
manifold M we can use the basic relationship Eg. (21-Eq. (3} to
give a precise meaning for the path integral

is[gw(X)]

Z =f Edu] (guv(x)).e‘h

M

(16)

As a first step, we have to realize the abstract orbit quo-

DIFF

tient space M/G (E) in M. For this task we consider a set

of D functionals fu(gdz(x)) defined in M and in a such way that

DIFF

the equations (see Egqg. (11)) in G (E)
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»fu((L.g‘sz)as(x)) = 0 (17)

have only the identity solution for a given {gyz(x)} i.e.: we
have fixed our gauge. In order to simplify the discussion be:
low we restrict our analysis to the class of the linear func

tionals fu(g (x)) satisfying the following .condition =
8%

§£" (g (%))
——g——ér—r—— is a functional independent
Isp X")

of the fiel variables {gas(x)} (18)

For instance, the well known harmonic gauge aagua(x) =
N Yde - pa . Su
55 % )._aad 8 Gop)

op DIFF
Thus, we can realize the orbit quotient space M/G

fu(gaB@d)belongs to the above cited class (
(E) in
M as the path inequivalent manifold solution of the equations
in M.

DIFF

Jop (W EM/GT TIE®) 2 £1(G x) = 0 (19)

DIFF(E) parametrization; (we assume

With this implicit M/G
formally its global wvalidity in what follows - see § 14.5.3 -
Ref. (9)); the induced path measure is, then, given by the

well known De Witt result ((9) - } 14.52)

[ai] @og(x)) = T (dg,,(x)). (0BT "V B, x) 6 _(£¥ (g, ()
(x €E) (20)

where
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1
| _ ~(D-4)(D+1)
pET vV B) (o wy = 1)1 +%)(u/—g(x))l‘ (21)

and the functional delta GF(fu(gGZ(x)) in the functional meas
ure (20) restrict its support to the manifold of inequivalents
metrics.

Now we have to evaluate the orbit (functional) volume de-

fined by a given inequivalent configuration {aaemﬁ}eMﬂquF

(E) .
For this purpose we need an explicit parametrization of the
orbit sub manifold O(EQB(X)}. Such expression is given by the

path integral

Yuv [t ,§Yz (x)] =f<x2E (dgp 5 (xyb Iy x). aF(fu (gpc;)(m—f“ (fL.g)(K) pc)

M (22)

We remark that the {gpo(x)} functional integration in Eq.

(22) is carried out over the whole path manifold M and the

group GDIFF(E) is the parameter domain for the orbit manifold
o({ §aB(X) h.

The functional integration over M gives the result

- - _ = D st (gyp) O\
Yyolbvays (x) ] = (L.g),, (x) .{u]ilDEg{ _TQLL(X)}} 23)
oT

and since the functional determinants involved in Eq. (23)are
ggc(x) -independent by the condition (18) we obtain that Yuv EL, I3 (x):]
is an explicit parametrization of the orbit O{(§uv(x))}.

In order to evaluate the induced metric in O{(auv(x)} by
the De Witt metric Eq. (14) we use the functional version of

Eq. (5) with Eg. (22) playing the role of Eq. (4). So, the dif
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ferential line element in O{(§uv(x)} is given by
3.2 _ V.o .V 8 Y - p
ds —Jd xd X'{_Gep v [{e (x)lgsz(x)]} .{(8eh) (x)

gy oy VB (e E (k)

8 Yiery & 1 p' '
: {éep' g Lle (x) g (x)] L. (8P ) (x) (24)
. . DIFF
where we have considered the group transformation L eG (E)
being infinitesimal and characterized by the infinitesimal gen
erators {e '(x)} (see Eq. (2)-Eq.. (3)).

The functional derivative in Eg. (24) yields the result

- SEM(L.g) )
ds? =dex a’x' V-3 (x) -DET_ ( e o (X)> . (8P (x))
P

R 7V %8 (07 Vg (k) .8 ) (x-x 1)

SE¥ ((L.g) ,) '
DETF{< T aB >}(x') . (8eP () (25)

p
with
§. &, ..  _yv—gB 836
Tr[i,(uv,as)(x)] - ) (8 lavz(guagvs.\‘cguvgas))a 3684) (%)
(0,,9,,0,,0,) " a
374 (26)

The functional measure induced by Eqg. (25) in O{(auv(x)} is

then given by (see Eg. (3) -Eq. (6))
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-10-

1
[&v]05,, =] =j( 1 /~gGa (e[ MR x1])2 (@eP (x))

x€E)
SEH ((L.g)_,)
af
{DETF( s (x))} (27)

Since we are considering the infinitesimal group transforma

tions only in_Eq. (27) we can use the Taylor expansion for the

Gfu((L.§)a8)
functional s (x)
p
§E¥ ((L.3) q) §E* ((L.g) )
. aB” (k) = a8 (x) + O(e?) (28)
€ e
o p € =0

P
and as a consequence of Egq. (28), we get the result where the

invariant group volume is factorized (the well known result due

to Faddev-Popov (%))

£ ((L.g)

. . |
~ — ~(U“:GB)
Cav] (g, (x)) =Tr[¥ (x) ] .DETF( B

of

(X))

G T /-3 (x) . (d&P) (x)>

oDIFF ek :
(29)

£
P

0

where the last right hand functional integral is the orbit volume.

Finally by grouping together the obtained results Eq. (20)
and Eg. (29) (see Eq. (2) and Eq. (16)) we obtain the pro-
posed path measure for Einstein gravitation theory

(UV,GBI

x,x"))

[Cau] (gw(x)) =( ) (dgae(x)).>,(DETy

XEE
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1
: . 2
.GF(f“(gYZ(X)).(TRL_Y(uv’aB)(X)])

) (x) ¢ ° (30)

0

SEM ((L.g)_,)
. < DET ( ap
F éep

€
P

which differ from the De Witt proposed quantum measure by the

-

term (TRZY MV 0R) (5)])1/2 (see Eq. 14.107 - Ref. (9)).

III ‘THE INDUCED QUANTUM GRAVITY IN TWO DIMENSIONAL SPACE-TIMES

Now, we anaiyse the phenomenon of induced gravity with non
zero cosmological constant in two dimensions closed space time
manifolds diffeomorphic to a unitary disc S? (see Ref. (10) for
a study with zero cosmological constant. It is well known that
in two dimensions gravity is apparently without physical meaning
because the Einstein density (Vg R) (£) (£-€S?) is a total di-

vergence; so the associated Einstein equation is an identity

1 =
(Ru\) - —2-guvR>(£) =0 (£ €s?) (31)

However, at the quantum level the physical object is the
gquantum path measure (see Eq. (16) and Eg. (30).) I:du](guv(i)x
Thus, let us consider the partition functional

%Tgﬁf (Y=g R) (§)d%¢ —iugj /-g dg*  (32)
2 e
S

z =J.[du](guv(£)).e 52

i .2 2
= -iu v-g d°¢
- e’ﬁl#g.f[:du:] (guv(g)'e Olz (33)
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where (uo)2 is the (bare) cosmological constant.
In order to evaluate the functional path measure [:du](%l¢€))
we follow A.M. Polyakov (}!) by chosing the global conformal

gauge in the Minkowski 1 +1 space time

g, (8) = p(E)§ ¢ (34)

From Eq. (20), Eq. (21), Eg. (30) we obtain explicitly the

expression for the above cited functional path measure

- _ -3/2
Cav](g,, (£)) = ggsz(ip(s)( 1(1 +e)) (€))7 pET (1) (35)
where L, denote the Faddev-Popov operator associated to the

conformal gauge obtained by the first time in (Ref. (11) -Eq. (21)-

Eq. (24) in a Euclidean S?);

- 3. p .
_ _ 26i 1 u- )2 2 23 2
Log DETF(L)— mj[z<——p ) (£)d“¢ +LIM 4ﬂ£,ﬁj p(g).d“g
g2 g>o+t g2

(i = /-1) (36)

Grouping together the Eg. (36) - Eg. (35) and absorbing the
infinite part of the Polyakov determinant L in a renormaliza-
tion of the bare cosmological constant, we get the induced two

dimensional gravity:

: 3
-2 i - R
z =J T dp (E)-1(1+c) (p (£))) 2 -exP{;%J[ 5%%(%(7§j)i)(£)d2€
SZ

Ees2
2
.Lp(s).d a} (37)

i 2
t* K ¥R
52
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We remark the non-flat path measure in Eq. (37). Compare with
the path measure for D = 4, Eg. (21)).
Now the classical gravity @1 - +o in Eq. (37)) 1is governed

by the Liouville equation instead of the Einstein equation, i.e:

O (Log p (§) = n2.22% 5 (£) (38)

which is exactly solvable (!1)

2
p(E) = 13Lf"z’l (39)
with £(2) = f(£1-+i§2) a holomorphic function in S2.

So, we conclude that the gravity is non trivial in 1 + 1

space times and is a purely quantum phenodmenon (!2),
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