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ABSTRACT

Static potentials derived from the inclusion of more than one
vector field in a single simple group are calculated. A confine-
ment mechanism including colourful unphysical particle is discus

sed.

Key-words: Two compensating fields in the same group.
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1 INTRODUCTION

The past few years have witnessed the affirmation of gauge
theories as a very systematic and mathematically elegant frame-
work for representing the basic forces of nature. The extrapola-
tion of the gauge principle from the class of the so-called in-
ternal symmetries to the category of space-time symmetries let to
the formulation of simple and extended supergravity theories. Their
properties are shedding light on our present understanding of how
gravity can be accommodated together with the electroweak and strong
interactions in a single unifying scheme. The momentum generated
by the gauge formulations was also a decisive stimulation for the
development of the Kaluza-Klein programme. It brought a way of
systematically understanding the presence of certain local inter
nal symmetries in the four-dimensional world as a manifestation
of extra compact dimensions with a characteristic length of the
order of the Planck scale.

Aside from these features which are of a more formal nature,
gauge theories, both in their exact or spontaneously broken ver-
sion, have also enéountered pragmatic support from the domain of
the experimental physics. The appearance of scaling-violation in
deep inelastic processes as calculated in QCD is a good test in
favour of the non-abelian structure, whereas the recent'UAl-and
UA2-collaboration results on the masses of the intermediate gauge
bosons Wi»and Z are a very sharp indication that gauge theories
constitute indeed a very suitable way of formulating field-theo-
retical models for the fundamental interaction.

However, issues like the cancellation of infrared divergences
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and the confinement of the quantum numbers associated with the lo
cally conserved charges in non-Abelian gauge theories are still
lacking a definite proof and even a full conceptual undeérstanding.
Though of an essentially formal nature, these problems areof great
interest for practical applications. The former, plays a crucial
role for reintering these theories a mathematically consistent way
of calculate processes (). The Bloch-Nordsieck mechanism with a
coloured particle as the initial state does not cancel the infra-
red divergences. At high energies, where QCD effects can be con-
sidered measurable, the factorization theorems fail for quark-gluon
scattering. The latter, has two aspects to be analysed. The alge-
braic framework and the dynamical aspect. The second approach allow
us to have an insight about the confining potentials. However the
tree-level shape f% for QCD propagator does not yileld a rising po
tential. Therefore in order to find a satisfactory explanation for
the quarkonium spectra it becomes necessary to introduce heuristic
confining potentials. An alternative way 1s to consider non-pertur:
bative numerical calculations. They are applied on the lattice or
in the continuum (?).

In view of what was discussed above, our effort here is to en
large the gauge principle (°) through the introduction of more than
one family of gauge potentials in association with a single sim-
ple gauge troup. Consequently, it gives gauge invariant mass temms
for the sector of vector bosons, the freedom to build up gauge in
variant scalars increases reasonably and for the propagators there
can appear a better behaviour in the ultra-viclet limit without
higher derivatives being introduced (“). However, one has to con-

trol the introduction of negative-metric ghosts in the theory.
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The central motivation of our work consists therefore in anal-
ysing the consequences of the introduction of more than a class
of gauge potentials in a single simple gauge group. Thus mixed
vector-field propagators are derived and discussed, and various
types of potentials are worked out in the static limit. This work
is one of the stages to guide us for Lagrangians which yield con
. fining potentials.

our paper is outlined as follows. In section 2, we discuss the
introduction of families of gauge potentials, and explicitly write
down for the case of two families the general gauge-invariant La
grangian that contributes to the propagator. In section 3, the
vector-propagators are derived. The various classes of potentials
are obtained and discussed in section 4. Finally, in section 5,
we conclude with a number of remarks, criticisms and comments on

our results.

2 LAGRANGIAN

In this section, we wish to write down a general gauge-invar
iant Lagrangian describing the dynamics of two families of vec-
tor bosons, Au and Bu, associated however with a single compact

and simple group, G. Their transformation laws are proposed to be

A =Uua U+ Xue o (1)
u H ig u
and
v L -1 1 -1
B, = UB, U™+ L U@ U (2)

ig
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They yleld covariant tensors as

Gy = A, - avnu;gzsu.Av] (3)
At a first glance, it might appear that the fields Au and Bu are
physically undistinguishable., However the theory differentiates
them through various aspects, as number of degrees of freedom
and dynamics. A gauge field means a field with a transformation
law that eliminates some of its unphysical degrees of freedom.
The presence of an inhomogeneous term in (1) and (2) will reduce
the number of degrees of freedom either from Au or fnm1Bu. There
fore there is just one gauge field. Although the calculation of
the dynamical variables depends on the Lagrangians to be proposed
from (1) and (2), it is easy to show cases where these fields will
carry differént numbers and types of canonical momenta. The ex-
plicit calculaﬁion of the equations of motion also shows the ex-
istence of a different dynamics for each field.

In spite of the presence of an inhomogeneous term in (1) and
(2), one should notice that the gauge connection. is unique. The
field combination

1 = "‘l l -;
(AH+BH) R DIJ UDuU + _U(BUU ) (4}

ig

o
1l
LS|

is the genuine gauge potential of the theory, whereas the combi-

nation

-1 a-
CIJ = 5 (Ap Bu) (5)

transforms homogeneously under the adjoint representation of G,
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] = U
Cu UCu (6)

Phrasing in a different way, the fields Au and Bu are vector fields
parametrized by the gauge connection of the theory Du and a spin-1
matter field Cu.

In the presence of these two families of vector fields, it is

clear that the freedom one has in building up gauge hﬂgnjant terms
which finally contribute to the action increases in. a reasonable
way. We shall now present and discuss the most general class of
terms that can be generated out of the fields AU and Bu (or alter

natively, C and Du) and are compatible with gauge invariance and

u
renormalizability. In the context of this work our objective will
be just to analyse the propagator contribution from the total La-

grangian (°). The basic covariant terms are

V. =
. E)u{-gD‘J (7)

g)u = vu+cc]J (8)
Dy = [Vu’vv] (9)
Cuv= [Vu’cv] (10)
zuv = clcuv-kczcv“-+c3[cu,cv]-rdlDuv (11)

They yield an abundance of gauge scalars in the same group.

The part contributing to the propagator is

o= txid +B, +dy v, vl +h] (12)
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where

A 2" 4z, 2%z

1= % Zuv vy Zuv 1 %uy

L (13)
&, = x, cDz"+ y,c 82"+ 2z, c P (14)
L, = x, 2, P'c’+ vy, Bch vz a0 c (15)
,-&4 = xapusav‘z“h y49u&>\)zw+ z4£u9“z§ (16)
;gs = x, Cp.f)\)ﬁucv *-YSCP\PVCM +2g Cl?uﬁvc\) (17)
‘Z’s = x6£)u9\,9“c" +y6.0u§>\@\’c“ +z6aﬁ“£§)c“ (18)

The coefficients c-d1 and xl-z.6

ters of theory. They are numbers. Thus (12) contains twenty three

are called as the free parame

parameters that can take any values without breaking the gauge sym
metry. Taking trace it appears three different structures in the

adjoint representation of SU(N),

trt2t® = wo?P (19)
trt2 e ¢ = % N c?P¢ (20)
er 2 tb £ td - sab(scd . 5adsbc_+ .12\11_ (dabe dcde__.dace ddbe N dadedbce) (21)

where [ta,tb] = i.cabctc.

Considering from (12) just the propagator part,
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®
i}
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Vv .Ha a2
C\)a.a C + cl(a.C Y4 o+

a2
al(auc\)) + bl au

+

a, 2 v.ua a, 2
dl(éuD\)) + e _SUD\)a.B D + fl(B.D ) o+

+ -

H.va v.ua @ a, i~ 8
9, BpCva.B D +h18qua.8 D" + 11(8.C )(3.D7) +

+ m C_ cH® (22)
c Ma

2 2
xl(c1+c2) + Y, 2clc

g = XyCy— ¥ Gy + X C +Y,C, +
X, CCp = ¥, CCy = ¥ =¥, C (23)
X, 2¢,¢, + yl(ci+c§) - X,C; =Y,C, +X,Cy * ¥ Cp +
X,cCy - y,CC, =X C - XcC (24)

2
zl(cl+cz) —zz(c1+c2) + z3(cl+vc2) - z4c(c1+cz) +

z5 —z6c (25)
X, Zdi -y, 2di (26)
- x; Zdi +Y, Zdi (27)
0 (28)
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o« 8 -5

9, = %y 24, (c;=c,) ~ ¥, 2d; (¢, +C,) + X,d, ~y,d, +
+ x3d1-y3d1-kx4(cd1—gc2)-y4(cd1+gc1)-y6g (29)
h1 = x1 2d(-c1+c2) + y1 2d(c1-c2) - xzdi +y2dl-x3d1 +
+ y3d1-x4(gcl+d1c)-+y4(-gc2+dc)-—x6g (30)
i1 = - z4g(cl+c2) + z7g(c1+c2) - 2.9 (31)

The canonical momenta corresponding to (22) are

m(c) = 2a, 3°%c” +2b

Heo oM Hoo |
1 1 9" C +-g1v8 D +rh1 3"'D° +

+

g°u[2c1 3.C+1,3.D] (32)

wu(D)

24, 5°p¥ + 2e, 5'n° + 9 a%cH +h, a¥e? 4

+

g"“[zf1 3D+ 1,9 .C] (33)

1

At this stage, one should notice that the distribution of on-
-shell degrees of freedom is clear. Du being a true gauge poten-
tial carries two physical degrees of freedom; whereas Cu can be
given a mass, m_, consistently with gauge invarianceEﬂﬂrde&njbes
three physical degrees of freedom.

The introduction of a mass parameter for Du can be justified
if, for example, by coupling Du to a multiplet of scalar fields

and then invoking the Higgs mechanism to generate the above mass
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term. One could also avoid the gauge-symmetry breaking, and coup
le the field Du to a scalar field, p, taking values in the Lie
group G (not in its Lie algebra). An effective theory can be ob-

tained for a massive Du—fkﬂd (°). Consider

J&(é) = m? tr[p4(VuVup)+ h.c.]

.. .a
1w ta
where P =e

p+ Up ! (34)
Defining & = mp
Ja(@) = tr[-207 00 + 4ig D“(au@) ot - 4ig @*(a“@)ou+
+ 4<;;2<1>*‘zsﬂ‘<1>Au - 4g2m;DuD“] (35)

The generating functional including (12) and (35) is

is D ,C ;T ,J 1]
213 ;3] = IDDH-QCH.%*E@ e sauge’ WM Tu 7w

P + + +
elfdxCD M +J 0 +JO (36)

Performing the integration on JE%,£%+
is
f£
z2[J ;3] = C €
(3,191 J@DMS L e

_ _ 2 2 L
Seff = Sgauge 4g my DuD tr Ln M

_ (Y u (1Y (TRRY
tr dn M = t, D DW+ t2D 0O Du+ t3D [Du,Dv] +t4[Du,DV] [D",D"] (37)
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where tl’ t2’ t3, t4 are numerical coefficients. At this way both
fields Du and Cu contain a mass parameter. Propagators will de-

pend on them.

3 PROPAGATORS

The part in (12) that contributes for the propagators is

Hv
[Cu'Du] K [cv
D\)

where KUV

= K, 00" +k, 3" (38)

In perturbation theory a physical particle is defined as the
poles of the complete and renormalized two-point Green's function.
However, this interpretation is not straightforward in the case
of two fields. There appear mixing propagators that are origi-
nated from the non-diagonal elements in ﬁhe kinetic term. The re
levant poles are the ones originated from the matrix Kl;'dmw'will
be called basic poles. The general expression for the propagators

obtained from it is

-1_2
cof([]+K1 m )ki

-i B Y (K
det ( [0 +K] m?)

-1
1 )k;

i]
<T(Pupv)> (39)

P2=D .
VR S
Thus the physical masses are given by the eigenvalues of the ma-

wh I=C
ere Pu

trix KIlmz. The physical fields will be determined by

X C
M T H
= R : (40)

yu physical U
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where RT is an orthogonal matrix which elements are given by the

-1

L m?, It yields,

eigenvalues of the matrix K

1
x = (¢ +g;D,) (41)

l+ci

1

1
l+p

(Cu+p1Du) (42)

]

1

'.—l

Y, = (C +2,D ) (43)

=
i
+
[

N

= : C D 44
Yy T ( u+pz.p) (44)

g

N

where

with 8 = a msw-d m

(45)

Observe that (41) and (42) solutions are not independent. Simi
larly (43) and (44). Therefore any choice in each set is a candi
date for physical fields. For instance, the situation xu=cu,yu=Du
(or vice-versa) is obtained through 6+=0 (or §_=0). It 1is also
possible with g1=0.

S-matrix is unaffected by a momentum-independent reparametri

zation. This is the case in (40). Therefore, for simplicity, we
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prefer to use the Cu and Du basis. Propagators will be obtained

through Kuv's inverse. Defining,

c»C C-»D
PUV PUV Q T
- (46)
D+C D-+D
Fuo o Fuv_] R

Hv

Shows that in order to invert (46) it is necessary to have at least
two block matrices invertible.
The general form of the propagators for two fields in the same

group representation is

= l 2 2 2 2
Puv = 5 [a(k“,m )nuv-rb(k ,m )kukv]

where D = alk“-+a2k2-+a (47)

3

The constants o a, and o, depend on the free parameters of the

17 72 3
ory. Writing the gauge invariant form for vector fields

Nk kg
- B P_(k*,m*) ; N=1,2 (48)

= 2
n=1 mN

2 2
Pn(k Bl )nuv

g
]
o~z

n=1

Consider now for the function Pn(kz) the pole approximation

(or Born approximation)

A
P_(k?) = — (49)
k2-m2
where A =(k2-m2)P_(k?) are residues. Substituting (49) in
n N°N k2=m?2
N

(47) yields
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a(k?,m?)

§
o
o~1

=]

(50)
and

o}

b(k?,m?) —
n=1 m? (k?~m?)
n n

-D (51)
(47), (50) and (51) define the poles. Unphysical poles can be a-
voided through a suitable choice of the free parameters of the the
ory. The present model with two fields is expected to have just two
poles in the propagator. Poles in (51) are necessary to avoid "time
compensated" ghosts. Multiplying it by k? and decomposing through

the partial fractions we have

a(0)

Rk

k? b(k?) =-D. + a(k?) (52)

where a(0) is a (k?,m?) k2=0.(52) shows the restriction conditions
for (51).

In order to effectively investigate the pole structure for the
propagators we are going to choose in (46) the case where T and R

are invertible. It gives

[a (kz,mz)nuv-+b

2 2
ce (k?,m?)k k] (53)

cc

L)
[
O |+

with a

ce d1k2+ mé (54)

6 4 2
b ) Blk +B2k +B3k +B4

6 4 2
B5k +B6k +B7k +B8

w
)

= B; (g, m) (55)
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The coefficients in the k? polynomials at (54) and (55) have their

values depending on the theory free parameters. For instance,

s 2 3
(h1+li) g

1 : 1
B, = - = a,g, (e, +f )[a,+b_+c.+ = ———=—1]_ — (b, +c,) (56)
1 2 17171 1 1 1 1 4 e +f 8 1 1
1 1
From (53), (54) we have
2 . 2
alk +mD‘ _ xl . Az
L 2 . 2 2 2 2
alk +a2k +a3 k -m; k“-m
2 2
a,m;+my
where Xl = —
my-m;
2 2
-a. m’-m
A, = 12 D (57)
m2-m2
2
and
- /o2 -
) az * o, 4a1a3
RE N
Zal
2
g
1
a, = a,d, - —
1 171 4
g
_ 2 _ 71 2
a, = a;m; - 5 mg
2.2
@, = mym. (58)

Poles characterizing physical particles will be determined
through a choice in the theory free parameters. It means that we

can avoid the cases with resonances (mN= Ren%+ iImmn), tackyons

(m2=—(m§)) and ghosts (m =-m ). Negative probability states (ghosts)

N

can also be avoided by having equations (57) and- (58) giving the
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same sign for the residues. The consistency condition (52) in (55)

yields
o
_ 1 2
B1 = - mDB6
3
o o
1 _2n __2 2
B2 = " mDB7 (a1 " mD) B6
3 3
o o
- _ __2 2 1 2
B3 = (al " mD) B7-+a mDB8
3 3
o
- __2 2
B4 = (a1 mD) B8
o
3
B5 =0 (59)

The others propagators are

DD _ 1 2 2 2 2
Puv = - [aDD(k ,m )nuv'+bDD(k ,m )kukv]
: _ 2 2
with app = alk +m, (60)
c»p _ 1 2 2 2 2
Puv = " [aCD(k ,m )nuv'*bCD(k ;M )kukv] .
g9
with a = -1 k? (61)
CD
2
D->C C-»D
va = Puv (62)

Observe that (53), (60) and (61l) have the same basic poles
structure. The calculations agree with (39). Similarly to (55)

poles from bDD and bDC can be worked out to avoid the ghost ori-
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ginated from covariant quantitation.
The propagators structure is unchanged for the case where

(Q'S)pv or (Q,T',R,S)u matrices are invertible. The condition for

\%

diagonalize (38) is that the symmetric matrices K1 and K2 com-

mute. It yields,
(h1+11)(a1—d1) = gl(e1+f1-b1—c1) (63)
A second possibility for the pole structure is a double pole,

.. 2 2 . o .

P(‘;L)J) - Bk “—m In \)+b(1_‘]) (k2,m2)k k\)] (64)
H (k2_m2)2 H H

where B is a number depending on the free parameters of the theo

ry. In the tree level the imaginary part corresponding to the am

plitude in (64) is
Im T = 6176(k2—m2)-(l—8)ﬂnF §' (k2-m?) (65)

One can demonstrate that the second term on the r.h.s. corresponds
to a ghost. Thus in physical amplitudes the ghost must be decoup
led (or not correspond to a real asymptotic state) if this theo-

ry is to be consistent.
Briefly we will illustrate the case with three fields in a

same group. In this case the propagators have the following form
I 2 2 2 .2
P = [a(k,m )nuv-rb(k ,M )kukv]

X - 6 4 2
where D, = Blk +82k <+B3k +B4 (66)
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The consistence condition is
k?b(k?,m?) = -D, ald) | 4x2) (67)
a
4

The basic pole structure is

3 A
2 2 .
a(k ,m?) _ i (68)
D, i=1 k2?-m?
1
where a(k?,m?) =Y1k“-+yzk2-éy3¢'6i,yi are  constants depending

on theory free parameters. The residues expressions are

w2
WIS i SF S S (69)
1 L4 2
Bimi+B,mi+By

We can always choose residues with equal sign and one Xis equal

zero. The equation D,=0 gives the masses for the vector particles.

3

4 NON-RELATIVISTIC POTENTIAL

The discovery of the J/¢y and T particles has stimulated much
interest in potential models within the framework of non-relativistic
quantum mechanics. For simplicity this work intends to study‘ the
case just with gluons. The non-abelian nature of gauge theories pre
dicts the existence of hadrons with no quark content (®). From the
phenomenology of these hadrons one expects to have a striking proof
for non-abelian theories. Here we investigate the possibility of
extending the idea that a colour index in the gluon field operator

implies the existence of bound states without quarks.
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Introducing two fundamental vector fields in the same group
yields another method to generate the gluonic matter. From (12)
the self-coupling of the gauge bosons is obtained by terms like
v]a

A L V,a
C\)a[D /C ' [Cu’D\)]a [D",D"]

i

{c, o}, 0*,0"1* , ¢ .c¥® p*°.c . (70)
These couplings are expected to contribute to the occurrence of ha
dronic states built of two different massive gluons. Observe that
experimentally it is expected that about fifty percent of the nu
cleonic momentum is carried by gluons. This fact can support the
argument that the gluons are massive and appear in different fa-
milies. There are other arguments in favour of a low-mass gluon (’).
Traditionally, physical insights have been found through per
turbation theory. A common hypothesis is that the simplest view
should emerge from a linear potential (%®). As a strong guide for
such potential would be a tree level propagator yielding a line-
arly rising potential. After that one can get a justification for
considering perturbativelly the self coupling (70) as a source to
build up gluonic. The nbn—abelian charécter is expected to repro
duce asymptotic freedom.
In the static charge approximation the fourier transform of
the single poles in (57) yields the following Yukawa potential,

-m, T -m,r
V(r) = G 1" +e 27) (71)

..(e
r
where G is a constant. The coulomb potential appears as a parti-

cular case when my and m, are simultaneously zero. Then the fol-
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lowing relation must be satisfied

2

m a
_f N 1 (72)
Ty d,

(71) can be interpreted as having at the position of a singulari
ty a particle, say a quark, acting as the source of the gauge bo

son fields. It produces a potential with finite range e,

e = 2.10° 11 —12—+i2 1/2 (73)
my m

where the distance is measured in fermion and the mass in GeV.
For the double pole case, the potential is a Bessel function

of the third kind, K (mx) (%),

N =

-mr
Vir) = G/2 =2 & (74)
m

Observe that in the limit when mr - 0 the potential is a constant.
It tells that at small distances an "asymptotic freedom" proper-
ty similar to that are obtained from renormalization group can
be reproduced in a non-relativistic limit.

In order to make some simply application consider the Iota
particle. Neglecting the bound state energy the so-called as ef-

fective mass of this particle is

. a, M = — m
mo+m, = |—2 o N 1.4 Gev (75)
1 72 : 93
aldla-——
4

Note that in this model it will depend on the free parameters of
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theory and on the mass parameters m; and mg.

Nevertheless, neither (71) nor (74) yield the desired linear
potential. Therefore in order. to build confined bound states for
glueballs it is necessary to understand the consequences of the
non-abelian properties in (12). However the intention on this
work is not to study the Dyson-Schwinger equations properties.
The motivation here is to explore straightforward arguments for
confinement. Although it can contain colourful ghosts/tackyons. For ins
tance, in order to get a linear potential from (71) and (74) it
is necessary to expand them in series. Considering that in a ha-
dron the concept of large distance is relative we can create a
logic on it to in order to justify the serie expansion. Another
method is to calculate the total energy to separate two gluons in

cluding the self energy. It is given by (°)

1l
(2m) 3

E(¥) = Jdﬁ(l—el )P (k?) (76)
Propagators including colourful ghosts and tackyons can also be

derived from (47). For instance,

’ POO v 2 2 2 2 (77)
(k —ml)(k —m2)
P 1 [ 1 + 1 ] (78)

(77) and (78) in (76) respectively yields

-m.,r -Mm,r
SR RS S A |

2. 2
M, m =My

E(r) ~ (79)
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E(r) ~ Lz [1-(Lerp)e™ ) (80)

ry
A large amount of energy must  be supplied to pull the involved
particles to a certain radius of separation since small distances
are considered for (79) and (80). Observe that the concept of a
relative distance in a hadron must be imposed again. It must be
interpreted at the level of suggestions. After that, for (79) the
energy to pull them apart becomes constant. For (80), beyond %
the energy of separation decreases. The linear behaviour can be
achieved by introduc;ng three vector fields in the same group.
Then, a triple pole appears that corresponds to a static poten-
tial with the form re™™'. However it contains undesirable ghosts.
Although it is a task for a future work, in this paper we have
not studied how to control the presence of ghosts. Moreover the
confined aspect leaves sbace for more than one speculation.
Colourful matter is being a block-box for experimental phys-
ics. Therefore the present status is to construct a mechanism to
jus£ify the confinement of colour. Actually it is characterized
by three aspects. There is no particle state with colour gquantum
number (!?), the dynamics of quarks inside the hadrons is non-re
lativistic (!'*), and third, there is experimental evidence for
heuristic potentials involving linearly rising potentials (!?2).
Take for example the P-wave charmonium statesbof the quark-anti-
quark interaction. These three facts are the sources for specula
tive mechanisms. Our point of view is that unphysical particles
should be allowed to participate in one of such mechanisms since
the potential that they intermediate does not have asymptotic limit.

They would not be detected but would influence the boundary lim-
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its for the colourful matter.

Concluding this section, we would note the relevance of the
free parameters of the theory. Depending on their values the prop
agator in (47) can generate Coulomb, Yukawa and exponential po-
tentials. It shows that a symmetry does not determine the poten-

tial structure univocally.

5 CONCLUSION

Quarks can be detected indirectly through jets. The evidence
for the existence of gluons is slim compared with that for quarks.
However the gluonic force is the responsible for the binding of
quarks into colour singlet. Therefore one way of looking for gluons
is through the study of the forces between quarks. Under this
point of view the presence of a linear potential should be the
guide about the gluon structure. The discussion in section 4, shows
that the introduction of a second kind of gluon belonging to the
same octet improves, relatively to QCD, the potential shape. For
the time being several glueball candidates have‘already being re
ported (°) , but the situation concerning their nature seems to be
controversial and confused (*3). An effective mass is included.
Therefore we would not be moving so far by postulating the pre-
sence of massive gluons. Building blocks made by gluons with mass
have as consequence the inclusion of candidates for gg bound states
with quantum numbers J=1. These states are not allowed when two
identical massless bosons are assumed. Nevertheless to have these

phenomenological .arguments, a model must first to carry - sub-
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stance for interpreting confinement,

Confinement is a subtle subject. It is a new and unexpected
matter behaviour. Therefore we are just studying the scenario (s)
for confinement. As far as we know there is no basic principle un-
derlying it. The basic question is if coioured objects can exist
or not as free particles. Right now the only principle underlying
colour physics is SU(3)C symmetry. Therefore wé have to try a va
riety of heuristic notions as bags, strings, constituent gluons,
solitions, etc. Thus using these trial and error prescriptions we
would like to look at confinement with two different approaches.

They are:

i) Strong force method. There is experimental evidence to be
lieve that colour forces between coloured objects decrease at
small distance but increases at large distances. A way to describe
this situation would be to associate with the force a non-heuris
tic quantum mechanical potential originated from a gauge-invariant
Lagrangian.

ii) Algebraic approach - The non-commutative relations for the

non-abelian charges are a basic problem for colour measurement (**y.

In this work we have attempted to investigate the possibili
ty the confining potentials exist because of two families of vec
tor fields in a single gauge group. Thus we would like to present
some considerations regarding the relationship between rising po
tentials and actual confinement of particles of a theory.

If in a given Lagrangian model one obtains that the fourier
transform of some propagator gives a rising potential, the first
conclusion one might draw is that the particles associated to the
fields which interact by interchanging that propagator would never

appear as asymptotic free states of the theory. This would be a
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first motivation, or hint, for justifying the confinement of‘par—
ticles of a theory. However this is not a suficient argument. If
one is able to project out of the &Q—space of states of the theo
ry a subspace of physical states which in the asymptotic 1limit
(t » t») appear as free states, then the fact that the potential is
growing with the particle separation is of no relevance. Incidental-
ly this is what happens in Q.E.D, whenever one works in the Landau
gauge. There, the presence of a term like ﬁ% in the photon propa-
gator leads to a linearly rising interparticle potential, though
the electron and the positron are not confined. Indeed, one can
project out of the &?-space electron and positron states which
have a free asymptotic limit (up to infrared problems that how-
ever one perfectly knows how to deal with). The growing character
of the potential is due to the ﬁ% term. It corresponds to a d¢host
which completely decouples from the theory. It means that the very
asymptotic states can be well-defined,

In our case, the situation is not as simple as in Q.E.D., as
we have a non-Abelian gauge theory and moreover two families of
intermediate vector bosons. Therefore, the growing behaviour of
our potential may have more severe consequences than the QED case.
Though we may really have confinement (that is, one cannot single
out colored asymptotic states), one has less control of the unita
rity of the theory. If we manage to show that we cannot really de
fine particle states which are free in some asymptotic region (con
fined states) and that the S-matrix is unitary in the physical sub
space of the full &Q—space, then we can say that we really have

a confining theory.

If this is actually the case, the colourful unphysical parti-
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cles though of not directly observable would lead to remarkable
physical consequences. The confining character of the interparti
cle potential would be attributed to their presence. In same sense,
this turns similar to what happens in the case spontanéously breaking
of a continuous local symmetry. There the Goldstone particles do
not appear in the physical spectrum but are the responsible for

the presence of massive vector bosons.

This work should be understood as one of the stages for building
up an alternative model in gauge theories. The introduction of
more than one potential under the same group requires anothers
step to be controlled. They are under study. Globally speaking,
a present achievement it tﬁat from a same group we can get dif-
ferent physical situations. Depending on the free parameters of
theory physical and unphysical particles be played. Similarly dif-
ferent kinds of potentials as the Coulomb, Yukawa and exponential
can appear. We could compare this situation with QED. There the e-

lectric and magnetic fields are parts of the same tensor Fuv'
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