CBPF-NF-068/85 SPIN-TWO EQUATIONS Ьy Adel da Silveira Centro Brasileiro de Pesquisas Físicas - CBPF/CNPq Rua Dr. Xavier Sigaud, 150 22290 - Rio de Janeiro, RJ - Brasil ## Abstract Transformations that maintain invariant the spin-two equation presented by Galles are considered. Key-words: Wave equations; Invariances. In the proof of invariance of (1) under (3) the presence of the last term of (1) is essential, so that the equations considered by Drew-Greenberg $^{(2)}$ and Barut-Xu $^{(3)}$ are not invariant under (3). Some possible useful expressions of ϕ are $h_{\rho}^{\ \rho}$ and $\overline{h}_{\rho}^{\ \rho}$, where $\overline{h}_{\mu\nu}$ is a tensor different from $h_{\mu\nu}$. Another kind of solution of (1) to be considered is $f_{\mu\nu} = \partial_{\mu}\partial_{\nu}\phi \text{ where, again, }\phi \text{ is an arbitrary scalar. As this }$ function $f_{\mu\nu}$ is not, in general, a solution of (2), it is necessary to impose on ϕ the following condition Therefore, the transformation to be considered is (5) $$h_{uv} + h_{uv}^{i} = h_{uv} + \partial_{u}\partial_{v}\phi ,$$ with ϕ obeying (4). In this case (1) and (2) are invariant under (5). In the same way it can be shown that $x_\mu x_\nu$ is a solution of (1) and (2) so that the corresponding transformation is $h_{\mu\nu} + h^{\iota}_{\mu\nu} = h_{\mu\nu} + x_\mu x_\nu \ .$ Finally, the Pauli-Fierz transformation (4) is expressed as (6) $$h_{\mu\nu} \rightarrow h_{\mu\nu}^{i} = h_{\mu\nu} + \partial_{\nu}f_{\mu} + \partial_{\mu}f_{\nu} - 2g_{\mu\nu}\partial_{\sigma}f^{\sigma}$$ In the theory formulated in ref. (4) f_μ were considered to be arbitrary functions of $x^\mu.$ Presently it is assumed that f_μ must satisfy convenient equations that will be indicated. It can be shown that (1) is invariant under (6) if the following relation holds (7) $$\partial_{\mu} \mathbf{F}_{\nu} + \partial_{\nu} \mathbf{F}_{\mu} = 0$$, Where (8) $$F_{\mu} = \prod f_{\mu} - \partial_{\mu} \partial_{\sigma} f^{\sigma} .$$. As a consequence of (7) and (8) it can be seen that \mathbf{F}_{μ} satisfies the following relations The knowledge of F_μ , however, is insuficient to determine f_μ for the relation (2) must be invariant under (6). In view of this restriction one must have Instead of looking for the general solutions of the equations (7) and (10), a more simple solution, namely, the one that uses functions \boldsymbol{f}_{μ} that verify $$(11) \qquad \qquad \prod f_{u} = 0 ,$$ and $$(12) \qquad \partial_{\mu} f^{\mu} = 0 \quad ,$$ will be considered. These functions f_{μ} satisfy (7) and (10) so that if they are inserted into (6) they give origin to a transformation that maintains (1) and (2) invariant. In view of the equation (12), of course, there is a simplification and (6) is reduced to $h_{\mu\nu} + h'_{\mu\nu} = h_{\mu\nu} + \partial_{\nu}f_{\mu} + \partial_{\mu}f_{\nu} \quad .$ ## References - 1. C.D. Galles: Lettere Nuovo Cimento 42, 382 (1985). - 2. M.S. Drew and J.D. Greenberg: Nuovo Cimento A, 60,41(1980). - 3. A.O. Barut and B.N. Xu: Phys. Lett. B, 102, 37 (1981). - 4. W. Pauli and M. Fierz: Proc. Roy. Soc. (London) A, 173, 211 (1939).