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We discuss here the complex phase-space dynamical behaviour of a
ctass of Bianchi IX cosmolog1ca1 models, as the chaotic gravita-
tional collapse due to Poincaré's homoclinic phenomena, and the
n-furcation of periodic orbits and tori in the phase space of the
models. Poincare maps which show this behaviour are constructed nu-
merically and applications are discussed.
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In this paper we intend to discuss the complex dynamical behav-
jour of a class of Bianchi IX models. In the dynamics of these
models we observe not only the possibility of a chaotic gravita-
tional collapse, but also phenomena as n-furcation of the orbits,
the presence of stochastic regions and stability islands in the
phase plane of the system. Stochastic properties in the dynamics of
a Bianchi IX cosmological model! were first discussed by Belinskii,
Khalatnikov and Lifshitz [1], on examining the approach to the sin-
gularity of a general Bianchi IX solution. Later Barrow and
Chernoff [2] derived some maps for the dynamics of the mixmaster
universe [3] which also exhibit strong stochastic properties.

The class of models considered here have the topology RxsS2,

Here $% is Hopf's fiber bundle with base space S2 and fiber homeo-
morphic'to S* [4]. The temporal coordinate is defined on R and the
geometry is given by

ds? = dt2 - (A2(t) 9y + B2(t) gH) (1)

where g, 1s the geometry of the fiber St and gy is pulled back
from the geometry of the base space S$?, The radius of the 2-sphere
$2 and the radius of S* are time-dependent, with respective time
dependence B(t) and A(t), and their dynamics is given by Einstein
equations with the cosmological constant term. The matter content
of the model is a perfect fluid with matter-energy density p, pres-
sure p and four-velocity a/3t. Einstein equations for (1) reduce to

three independent equations. Two of them define p and p, and the
third one yields the differential equation

B, 8y K M, 1 A (2)
B B A AB B2 B*

The physically admissible solutions of (2) must be restricted by
the energy conditions [5] that p and p must satisfy. In all cases
discussed in this paper the energy conditions are satisfied.

From (2) we examine the following possibilities:
(I) Oscillations of the sector 52 of the geometry: Az = A?, and the
dynamics of B(t) is described by the hamiltonian H= z(q)2 + V{(q)=C,
with V(g) = 2q - .222 I1n q and C = const, where we denoted g= =B2(t).
The potential V(q) has one absolute minimum for q = A% and corre-

sponds to the configuration of the Einstein Universe, The trajecto-
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ries of the system in the phase plane (q, ﬁ) are closed curves
about (A%, 0), whose period depends on the parameter

€2 = C - 2Xx%(1 - 1nA?), They can be confined to any neighborhood of
the stability point (X2, 0).

(II) Qseillations of the sector S': B? = A2, and the dynamics of
A(t} is given by the Hamiltonian H = % (A)2 + V(A) = D, where

V(A) = —l:-(A“ - 2A%A2) and D is a constant. The minimum of the po-
4
tential also corresponds to the configuration of the Einstein uni-

verse. The points A = 0 are physical singularities of the model. We
remark that for the value D = 0 the trajectories in the phase plane
(A, A) are homoclinic curves [6] which 1ink the homoclinic point
(0, 0) to itself.
{IIT) Gravitational interaction of the sectors S' and 5%: we con-
sider the special mode in which the oscillations in the sector S¢
excite the degree of freedom of S!, via gravitational interaction.
For this we take B(t, ) a periodic solution of (II} and substi-
tute into (2) to obtain

v TLEd (as a2 p) 20 (3)

Bz

Here a prime denotes d/dn where the variable n is defined by
dn = (T(e) B)™* dt. We note that the period T(e) of the function
B(t, €) is normalized to 1 in the variable n. Equation (3) properly
describes the excitation of the degree of freedom of S* by oscilla-
tions in S2: in fact (A2 = A2, A' = 0) is a solution of (3) (corre-
sponding to mode (I}), and we can show by linearizimng (3) about
A2 = A* that any small fluctuation u = A - X is highly unstable and
grows rapidly into the non-linear regime due to the oscillations of
the sector S2 [7].

The .system (3) has a complex dynamical behaviour as we proceed
to discuss, and we distinguish two set of phenomena., In what fol-
Tows we take A% = 1,

First let us consider the homoclinic curves D = 0. of case (II)
which smoothly link the unstable fixed point (0, 0) to itself. The
introduction of a small perturbation according to (3) by infinites-
imal oscillations of the sector S? (namely for e€? infinitesimal in
mode (I)) is sufficient to break this smooth Tink and produce the
homoclinic phenomena of Poincaré [8] in a small neighborhood I' of
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the homoclinic curves D = 0. The homoclinic phenomena are the basis
of the chaotic behaviour of the model, and we can always program
the dynamics (by properly choosing initial conditions in a certain
subet of T'}, so that for any positive integer n (n = « included)
the universe undergoes n non-periodic oscillations (each oscilla-
tion requiring a Tong time) before collapsing {for n = «» the uni-
verse undergoes periodic oscillations) [9].

Second, let us consider (3) for the case B2 = 1 (corresponding
to mode (II)) and restrict ourselves to the dynamical region inside
the separatrix D = 0 (namely - 1/4 < D < 0)}. As well known, the
phase space of this unperturbed system is foliated by 2-dim inva-
riant tori [6,10,11] each one characterized by its frequency w(D).
Introducing -in (3) the infinitesimal pertuﬁbation B2=1 + ¢ cos 2wn,
the KAM theorem [12] tells us that most of the tori are preserved
by the perturbation, namely those whose unperturbed frequency is a
diophantine irrational. These preserved tori enclose destroyed re-
gions (corresponding to unperturbed tori with rational frequency
and their.neighborhood) whose Lesbegue measure goes to zero as e>0.
The associated Poincaré map [6,11] to period 1 exhibit — for these
destroyed regions — a structure of elliptic and hyperbolic fixed
points [10, 13] which correspond to periodic orbits of the system.
The neighborhood of each hyperbolic point has chaotic dynamics, and
the neighborhood of each elliptic point reproduces again the same
picture — diophantine irrational tori enclosing destroyed regions
whose Poincare map has a structure of elliptic and hyperbolic fixed
points, corresponding to period orbits of larger periods, etc. — to
arbitrarily small scales [14].

‘For large e, the KAM no longer applies but we may examine the
dynamics of (3) by constructing the associated Poincaré map to pe-
riod 1 numerically. We have done this for a large set of initial
conditions and a large range of the parameter € [15]. In the
graphs (X, Y) stand for (A, A').

For large € the structure of irrational tori is still main-
tained in a region close to the stability point (1, 0). Fig. 1
shows the torus section obtained by numerically constructing the
Poincaré map for initial conditions (A = 0,96, A' = 0,00) and e=2.0
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Some of the tori n-furcate as we vary the parameter ¢ to a certain
value. In Fig. 2 we show the Poincaré map corresponding to a
4-furcated torus for A = 0.502, A' = 1.22 and € = 1,0. Note that a
T=4 periodic orbit is enclosed by the torus, ‘
‘The chaotic region which appers about an infinitesimal neighbor-
hood of the unperturbed separatix D=0 — due to Poincaré's homo-
clinic phenomena discussed above for €2 infinitesimal — tends to
increase for increasing € and to occupy a large area of the phase
plane of the system,. as.shown by the Poincare map in Fig. 3 for

A =0,55, A' = 0,007 and € = 2,828 (three hundred points plotted).
However inside this chaotic region we still find islands of stabi-
Tity as shown in Fig. 4 by the Poincare map of a 5-furcated torus,
enclosing a T=5 periodic orbit (for initial conditions

A =0.5, A' = - 0.00007 and ¢ = 2.828).
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Some possible physical applications can be discussed. Small
fluctuations in matter-energy density p, pressure p, etc. over this
background geometry can be made to grow (for specific wave lenghts)
by a res onance phenomena when a bifurcation of orbits occurs. Let
us take a T=1 periodic soution A(n, €) which — by adiabatic varia-
tion of ¢ — n-furcates to a T=n periodic solution, By a resonance

phenomenon in the linear equations governing the fluctuations, mat-
ter fluctuations can be amplified whose wave lenght is equal to 2wn

and thus create a selected spectrum of perturbations in the matter
fluctuations..This work is now in progress.

Final Note: for computational simplicity we have taken for B2(n, ¢)
the approximate expression

B2(n,e) = 1 + € cos 2wn + €2 [% - % sin22mn - % ces 4mn].

Larger dots in the graphs represent actualty several near points.
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