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Abstract

The differential equation of cosmic ray's nucleonic

component is integrated with distribution of elasticity.
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The differential energy spectrum of the primary cosmic
ray nucleons at the atmosphere depth x(g/cm?) may be obtained

integrating the differential equation

BF(x,E)

A EEE) o pe,E) + | Fx, '%)f(n)” d—;} (1)

with the initial condition

F(0,E) = G(E) . (2)

The function G(E) that represents the primary spectrum of protons
at the top of the atmosphere is supposed to be non negative
continuous and bougded in the interval 0 < a < E < «», The existence
of the integral f G(E)dE, for E 2 a, must also be stated because
it represents the grimary integral spectrum. The function £ (n)
represents the distribution of elasticity of the collisions of

the nucleons with the air nuclei and A is the mean interaction
length of the collisions. As it is well known, this equation can
be easily integrated using the method of Mellin's transforms, but,
so doing we obtain the real solution represented by a contour
integral in the complex domain and, only in very few particular
cases this integral can be evaluated exactly and we must use some
approximate method for estimate it as for example the saddle point
method.

The integration of the equation (1) which takes in to
account the distribution of elasticity is only a little more
complicated than the integration of the simplified diffusion
equation

OF (x,E) _ 1 1 _E
T—-TF(X'E) +m)-F(Xy T:E) (3)
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with the initial condition

F(0,E) = G(E) (4)

where k represents the mean inelasticity of the collisions.

As it was shewn by the author in a previous paper[1],
the integration of the equation (3) can be easily performed using
the method of successive approximations. This is the reason that
we shall use the same method to treat equation (1).

To simplify the work of performing the successive

approximations first we put
F(x,E) = e~ ¥/ A y (x,E) (5)

In so doing equation (1) and the respective initial condition,

become

. 1
B |1 JO y(x, B emD (6)
y(0,E} = G(E) . (7)

Now we make the following successive approximations

yO(X,E) G (E)

G(E) +

>

v, (x,E)

p'e 1 ' | (8)
[ dx l yn_1(x,%)f(n) Q% .

[1]01iveira Castro, F.M., (1977) An. Acad. Brasil. Cienc. 49 - 113 - 118.
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-3-
So doing we obtain successively
¢
d
v, (x,E) = G(E) + 2| G(E)£(n,) i}
L ALy 1 n,
lo
r 1 1 1
dn 2
y,(x,E) = GE) + ¥ | GEE(n,) —L + X Gl=2m) x
2 s R R T S I N2
‘0 °e 0 ‘0
f(n1) f(nz)
X dn,dn
1 1
n v f(n,) f(n,)
(x/\) E 1 Vv
- LN 2 J ® o @ d . o
yn(XlE) \)21 V1 [0 [0 G(n1...n\)) n1 n\) n1 /dnv
+ G(E)

a) Convergence of the Succession yn(x,E)

Note that if G(E) is non negative and bounded in the
interval I = {[a,~), a > 0, we have G(E) £ M for E e I, where
M is some positive constant. The function f(n) which is a datum of
our problem and is essentially positive. We assume the existence

1
of the integral .I f(n)dn/n = B .
0

Now consider the series S = } wu (x,E) whose n th partial
n=0
sum S is yn(x,E). It is a series of positive terms. S is bounded

in any set (T) such that 0 < x < X; a < E < b, a > 0, because

gV < M eF¥/X oy oBX/2

<

The uniform convergence of the exponential in the set (T) assures

the uniform convergence of the series S to a function y(x,E), on (T)
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The convergence is uniform relatively to both x and E, on

(T). Then we have

y(x,E) = )
v=1

\)! e e s e G( ) o o - dfl.l..-dn\)

Naooen. n n
J 1 V. 1
0 0 (9)

1 1
x/0)" I g Efp £
v

+ G(E)

b) Synthesis of the Solution

We must proof that the sum y(x,E) = lim yn(x,E), in (T)
n--c
is effectively a solution of the equation (6) with the initial
condition (7).

In fact, we have

b4 1
. . 1 E dn
vy(x,E) = lim yn(x,E) = G(E) + lim X dx y (x,=)f(n) —

b'e 1

G(E) + 1 [ dx lim J y. (x, E)f(n) dn .

n oo n n n
0 n 0

Since yn(x,E) + y(x,E) uniformly in (T) we can take the limit

under the sign of integration. Thus we have
X 1
_ L E dn
y(x,E) = G(E) + 'X{ dx J y(x,ﬁ)f(n) m .

Hence y(x,E) 1is a solution of equation (6).

Note that y(x;E) is continuous in any set (T):

o
IA
»
A
&
o)
A
o

"

£b, a>0, X and b arbitrary, but finite.Moreover,
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for < x fixed y(x,E) is bounded in the intervals 0 < a £ E < o,

c) Uniqueness of the Solution

Suppose that there are two solutions y(x,E) and z(x,E)

of the equation (6) both continuous on every rectangle

=
1A
™
IA
x
[+
7N

a>0, b>a, X >0.

Then the difference u(x,E) y(x,E)-2z (x,E)

.

Now substituting iteratively in (10) the function u(x,E) under

must satisfy the

homogeneous equation

(10)

>

1
] E) ¢ (m)dn
ulx,y) = dx [ u(x,n)f(n) m .

0

the sign of integration by its own value given by (10) we have suc-

cessively
rX 1
u(x,E) = 4+ | at £(n.) in—1u(t E,
’ A 1 1 ni 17 n1
Jo 0
1 7 ! £(ny) =~ 1 £ 1 dn, E
x| | w9 [x dty | Elnp)— ultyg)=
Jo 0 o 0
x & 'V £mpan, (1 £(n,)dn
- dt dt ] L 2 2 u(t E )
S A 1 2 Ny Ny 27 nqn,
0 0 0 0
% the1 Vet.dn, 1 £tmyan |
=L | at at e B Do B
ol BE TN n | T e T =
0 0 0 0
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Since u(t,E) is the difference of two functions conti-

nuous and bounded in the interval a £ E < »; a > 0, we can write
= |

T < M1 where M, is some positive constant. Thus
1c¢on '

|u(tn’ 1

we have, for every fixed x :

n 1 £(man

X_x g? where B = —_—— = >0

lu(x,EI s nl T

So that u(x,E) - O,when n » », for any x fixed such that 0 < x < =

Therefore y(t,E) = z(x,E). The proof is complete.
Finally, taking equations (5) and (9) into account we

have

1 1 .
o v f(n,)
Fix,E) = /% 7 XM { ...{ el—E—) —L ...
v=1 :

...dn. + G(E)

oo —— dn
v 1 \Y

which is the desired solution of eq. (1), with the initial

condition F(0,E) = G(E).



