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ABSTRACT

We analyze the non-abelian Aharonov-Bohm effect in the
Feynman Path Integrals framework generalized to pseudo-classi

cal mechanics.
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The non-abelian generalization of the Aharonev-Bohm ef-
fect [1j was proposed by -Wu and Yang [:2:1 "in 1975. In.a recent: comment
[3:] we analized this non-abelian effect by exploiting ‘the -existence
of internal degrees of freedom associated to the particlés co-
lour charge. ,

Our aim in this comment is to generalize the classical ana
lysis implemented in Ref. [[37] to the quantum level by ~-using
the Feynman path integrals framework generalized to pseudo-clas
sical mechanics. |

Let us start our analysis by recalling some basic facts
of pseudo-classical mechanics. In this framework the motion of
a colour (spinless) massive charged particle is characterized
by thé usual (relativistic) vector position x"(£) added to a
set of Grassman complex variable {el(g), @E(&)},where giggggf

denctes a parameter describing the evolution of the system and
g = 1,---,N is the gauge group number of generators {i,} (5],
The pseudo-classical lagrangean of a spinless colour
particle in the presence of anvexternalYang-Mills gauge field

vy = ALy . . .
AU(X) --vAu(X_)Ai is given by [4]:
U i NEvTR) 1 N
* - . = . ¢ ‘N -
H(x¥(8),0,(8),05(8),A (X)) = -mcV X(E)+ 5 1,2, (0367~ "7 0)(5)
- i x ¥
g(0F (1) 416 ) (B) AL(X(E)) XF(E) (1)
In the Feynman path integral formalism for quantization,
the quantum propagation of the above physical system is given

by the '"continuous' sum of all trajectories connecting the i-

nitial and final states characterized respectively by the ini
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tial vector position Xu(ii) = )(u and the colour degree @J.(gi)=sj
and Xu(gf)=Yp with ei(gf)=ni. We propose for this continuous

sum the following path integral:

N
G(|X ,8.>; ]y n>) = f I dX T n de,E) dex®) ) .
et - [ {2 ox@I( 1 000 s00)

Xu(gi) =XL1
X, (&)=Y,

- (6, &8 (&) - exp { (3/A) ffi’o(xuca), 0,(8), 93(8), AlX) d&p, (D
! ‘.

1

where Jg(xp(ﬁ), 0,(8), 0z (&), Ai(X)) is given by eq.(1l).

We note the similarity of the grassmanian degrees propa-
gation with the usual quantum field fermion propagation and
the eq.(2) posseses group matrix indices. The remarkable feature
of the proposed grassmanian path measure is that we can evalu
ate it explicitly and leading to the well-known Wu-Yang factor
as we show below, result which generalizes the Feynman's re-
sult [6] on the abelian case. This feature stems from the fact
that the grassmanian path integrals are of Gaussian type. So,

we have to evaluate the expression:

. N
@A) | (1 e, O a03(9). (0 () -

2 N v en . :

.exp {(i//lﬁ) J 3i I (030,70 &3 E) - 8(03 (4D 4, ©)) (s)A;(xca))x“(s)}
&

©)
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By noting the useful identity (O*@ .EGQ)(E) ="é%(®£®ﬁ)(g)‘
-2(93@2)(£), and the result that the "unidimensional' Grassma
nian 6reen's function is given by the 'non-relativistic" prop
agator ‘é% -1 (Zl, 22) =e(21-;22),;we can evaluate exactly the
expression (3) (ts] . See €q(2.20)):

: (1/2x) [ (nyni)-(B.8%)]
I (X, (85 A X)) = e SR A

= .
(p{elg I A; (x (8)) .x“(a)xi}> | (4)

So, we obtain the expression for the proposed propagator:

I
, ) i/eﬁ«Uf-m; xzca)da}
G (Ix,, B> Yo g >) =[ Iodx (& e LE

Ei<€<€f
XU (gl) —XU
Xu(ﬁf}'Yﬁ
i
L (X, (€, ANC) - (s)
Now let us analyze the following '"Gedanken" experi-

ment: LES]) a quantum charged U(N),spinless particle prop
agates in a region R where there isa non-zero Yang-Mills gauge
field with the property that its -associated field strength
vanishes, with the initial and final states IXu,Bj>;|Yu,ni>.
We remark that this region can have an arbitrary topology.
The associated quantum probability amplitude is given by Eq. (5) i.e,,
G, B> 1Y ,nk)

J
Now we observe the following fundamental fact: the only
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system trajectory that contributes to the Wu-Yang factor in
(5) comes from the classical trajectory, due to the vanishes
field strength condition, as we can see by considering the
functional Taylor expansion of (4) around the classical tra-

« ' u . .
jectory X', (8); &; < & < & }:

[r(x¥ &) + xb(e); AS(X))] - [ (x¥Ce); A:(XD] -

Ef a gf o G(N) “2.£Y])
=z g | dn & mp)-—-| dny(x Mooy 156
No1 N 1Vq *'L N\"q YN %y O u
Ei E‘i 6Xq (nl)--—qu ("\N) Zu(£)=xc1 (€)
(6)

Since all these functional derivatives in Eq. (6) are mul
tiplicatively proportional to the field strength (see for in-
stance Eq. (20), Eq. (21) of Ref. [8]); we achieve the above
quoted resﬁlt.

Now we consider the reversal quantum propagation, charac
terized by the initial and final states lYu, n, > and
!Xu§ Bg >t G(lYu, n o> IXH; 83 >). As usual, we would expect
that the probability amplitude for the ‘'closed circuit"

(lXu. N >3 IXU, 83 >) given by:

should be a phase independent of the particular system

trajectory connecting the above initial and final states. But
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due to the colour degrees (see Eq. (5) - Eq. (6)) we obtain
that this phase is given by the Wu-Yang factor defined solely
by the classical closed system trajectory.

Bo, we have shown that the outcome of the propose '"Gedanken'
‘experiment, analysed on the quantum level, depends fundamentally
on the (matrix elements) of the Wu-Yang non-integrable factor
as obtained ih our previous study (Ref."ESJ)'and rpredicted
earlier by Wu and Yang.

Note added: after this comment was completed, we received the
pre-print CPT-85/P-1769 by P.A. Horvathy, where physical ap-
plications of the above mentioned non-abelian Aharonov-Bonn ef

fect is made.
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