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ABSTRACT

The theory of electro-weak interactions and Jordan's
description of Einstein's Theory of gravity are unified in a
unique scheme. A short-range counterpart of gravity, envolving
massive tensor bosons of masses 365 GeV and 520,3 GeV, is

obtained within the new scheme.
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I INTRODUCTION

The strong equivalence principle demands that gravit-
ation couples to all matter in the Universe in the same way. In
Einstein's theory of gravitation this is achieved by requiring

that the source of gravity be just the energy-momentum tensor

*
(of all the matter in the Universe)( ):

(1) G = R -

As is well-known equation (1) can be derived from a variational

principle
(2) $ J Y=g L d,x =0
where the total Lagrangian splits into a sum

1
(3) L_-IZL + L

E M

tained by variation

L = R and [ is the matter Lagrangian from which Tuv is ob-

1 8(VY=g L) _ MY
/=g 9y

The specific splitting of the Lagrangian of the form (3) is called
minimal coupling and it guarantees the strong equivalence principle
to be obeyed. The Ricci scalar R plays the role of the free

field part.

The key objects in Einstein's theory are all of geo-

(*)

We use convention in which the metric has signature (+---).
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metrical significance: guv are the metric coefficients in the
4-dimensional space-times, as? = guvdxudxv ; PEB are the connec
tion coefficients and RaBuv' are the components of the Riemann
curvature tensor.

In not so close analogy with other forces, the guv

are the potentials; PEB are the forces and R are the tidal

aBuv
forces. The requirement that the Lagrangian be invariant under

general coordinate transformation leads to the Bianchi identities

(4) c*V - o0

and to the conservation of energy and momentum in the form of an

equation of motion for the bulk matter

(5) ™ -9 .

A series of beautiful experiments with ever increas-
ing accuracy has shown Einstein's theory to be the only viable
gravitational theory (disregarding such esotheric theories where
torsion is introduced microscopically, for instance) and there
is therefore not the slightest need, for the time being, for
a modification of Einstein's theory. So leave Einstein's theory
intact.

On the other hand the success of the so called gauge
theories has led many workers to try to incorporate gravity into
a unified scheme. As a matter of fact we know that Einstein
himself made every attempt to unify gravity with electromagnetic
forces. As is well know he and all others have not succeeded

in such a program. Parallel to this evolution and independent
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of it, weak and electromagnetic forces have been shown to admit

a sort of unification by means of an appeal to a gauge structure.
One is therefore tempted in order to unify all these forces, to
try to turn Einstein's theory into a gauge theory. Unfortunaﬁely
until nowadays such enterprise has been unsuccessful. The

main reason for this rests on the fact that the choice of primary
objects in electro-weak and gravity theory is profoundly
different, due to the special role of gravity in the description
of the structure of metric properties of space-time.

(1)

In a recent paper it has been suggested that the
use of Jordan's formulation of gravity theory could be of great
help in providing an alternative description of Einstein's
theory which could well be adapted to a scheme to accomodate

gravity and electro-weak forces. In the present paper we describe

the model in more detail.

I JORDAN’S FORMULATION OF EINSTEIN’S THEORY OF GRAVITY

The Weyl conformal tensor WaBuv can be written as

(6) W =

aBuy - Raguv ~ 2 [901Rgv * JgvRan = JouRen ~ IguRav! *

[ NS Y

[ Y

R gaBuv

in which

gaBUV = gaugev - ganBu ?

and possess a number of algebraic and physical properties(z) which
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(3)

led Jordan and co-workers to the idea to rewrite Einstein's
equations by means of the Weyl tensor.

Using Bianchi identities in the form

aBuv  _ 1 -ufe;B] 1 _wlog B8]
(7) WY =S R - 2 gt
where [ ] i.e. antisymmetrization means A[ik]'= (Aik-Aki) and

differentiating Einstein's equation (1) in the form

R = K (=T +1

uv uv 7T49g )

}J\)

one arrives at the equation

(8) woBHY

1 oulo;B]
eefp

1 _ %% gu;aT.BJ] _ 0B

At the price of one more derivative we have thereby arrived at
an equation which contains Weyl's conformal tensor and the energy
momentum distribution. Remark that in general the set (7,8) of
equations is not equivalent to Einstein's theory, since a third
order differential equation which is derived from a second order
differential equation has of course in general more solutions
than the second order equation.

At this point one should then ask the following
guestion: under what conditions will equations (7-8) be equiva-
lent to Einstein’'s theory ? The answer to this question was

(4)

given by Lichnerowicz in the early sixties. After the

examination of the Cauchy problem he showed that, if we admit

Einstein's equations to be valid on an space-like hypersurface

. 1 C s cs
L, that is, (Ruv - 7'Rguv'+ KTuv)Z = 0 as initial conditions

for Jordan's equations, then this system (7-8) becomes completely
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equivalent to General Relativity. Thus using Einstein's equation
in its standard form (eq. (1)) or in Jordan's formulation

(eq. (7-8)) is just a matter of taste and/or simplicity, which
should be dictated by the examination of the problem under in-

vestigation.

II1 THE LaNczos FIELD H
va

The difficulty in finding a true tensor as a potential

of the Weyl object W has been one of the main obstacles of

aBuV
Jordan's formulation: Does there exist a third order tensor

from which, by first order derivatives, the Weyl conformal tensor
can be constructed ?

Although this problem had been solved in principle some
20 years ago by Cornelius Lanczos(s) his result found little
practical application by the scientific community. The mathema-
tical situation was recently remedied by the work of Bampi and

(6)

Caviglia , who proved a theorem which guarantees the

existence of this potential H in any manifold endowed

HVA

with a Riemannian structure.

Following Lanczos we set

(9) Wogwe = Hagusv ~ Hagysu * Huvags ~ HuvB;a *

1
+ 3 [vaa + Hav)gBu + (HBp + HuB)gav -
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2 o)
+3 H gix SaBuv
in which
- o A
(10) Hau z Ha Lo H, xiu
This tensor HaBu has the properties
11 H = -H
(11a) aBu Bau
* ou
11b H H = 0
( ) aBUg

Such tensor has then only 20 independent components.
This implies that expression (9) admits a gauge symmetry.

Indeed, (9) does not change under the map

2 = M - M
(12) Huvk v Huvk Huvk+ ugvk vgpl
for arbitrary vector M . This means that the trace H gvA = H
u HAV u
is completely free for given WaBuV' Furthermore, (9) is invariant

under the map

o,
(13) H - H = H + S for S

HVA HVA HVA HVA ’ UVA QuA;v"ka;u

in which S has the same symmetries as H is traceless and

HVA
is a ghost Weyl field — that is, the Weyl tensor constructed with

HVA!

such Suvx vanishes identically: it has only six degrees of

freedoﬁ.
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Thus the specification of the four Mu and the six
independent components Of-suvx yields a definite characterization

of the additional 10 degrees of freedom of H There remain thus

UVA”©
10 degrees of freedom of our disposal not specified by the Weyl

tensor.
It should be stressed (as was already pointed out by

Lanczos) that although H, and the metric tensor guv are related,

Bu

a functional dependence of Hae in terms of v is not defined

u
in a local basis. This as will also become clear below somehow

hampers the use of the Lanczos field.
However, there is a special case of interest in which

the explicit dependence of H g, 00 guv can be achieved locally:

Bu
the case of a weak gravitational field. Indeed, as shown by

(5)

Lanczos , if Iyv ¥ My * Ewuv (for €2 << €) then in first

M
order approximation we can write

(14)

o
12

(v

| m

-1 1
HVA T uA,v " ka,p *% wlpnvx -6 lP|\)nu)\}

uv
wuvn- .

In this case it is easy to show that Jordan's equation

in which y

reduces to the Pauli-Fierz equation for a spin-2 particle

represented by wuv.

IV THE LAGRANGIAN

By now we have arrived at the following: we have
derived field equations which are equivalent to the original

Einstein's equations, provided the initial geometry satisfies
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Einstein's equation on a Cauchy surface. The field equations can
be formulated by means of a three index Lanczos field and this
field contains enough freedom such that a vector and an anti-
symmetric second order tensor can be incorporated at will. Can
equation (8) be derived from a Lagrangian ? The answers is yes.

We treat the free field first.

Consider
2
(15) L= - 20 o5 Wby
- 8k g oBuv
where WQBUV is given by (9) and 25 is a constant with dimension

length. Three different kinds of terms appear in the Lagrangian.

The Lanczos field itself,Ha the metric guv and FEB in the

Bu’
covariant derivative of the Lanczos field. Note that the primary

variables are Haﬁyand HaBYlﬁ'

We can show the algebraic variation

(16) S (vzg webBroy

) =0
Gguv

aBAC

since this is a direct consequence of the identity(7)

HVA _1
(17) Wa’ Wprk T 4 Tpouv gaB

Variation with respect to H gives the left hand

VA
4

side of equation (8) § f /=g Ld'x = J/:E .Wapr_v aHaBp and
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*
and SL// 6F3v vanishes identically due to the gauge symmetry (13)( ).

V  THE MATTER LAGRANGIAN AND A CURIOUS SCALLING LENGTH

All we know about the matter Lagrangean is that

But we do not know how LM depends on Huvk and H . Nor do

UVA,p
we know how variations of the metric tensor 6guv are related
to variations aHuBu' So let us see what is needed to obtain
equation (8) by varying Huvk' Starting from
_ ,2-0Bu C i _ mHV
GLM = ZOJ GAaBu + div =T Gguv

and integrating by parts it is easy to show that

2

20 o

= — Bu oo
TRV wh(u V) ;a

(18) 8g - % g &[h gPHg%%

uv aBu];o

is a sufficient condition and 20 is introduced by dimensional
arguments. However Sguv could in general be different from the

right-hand side of equation (18).

*
( )Indeed let AUV ¢ = _EL_
o v
aT
uv
Partial integration leads then from &S = APV 1% to 8s, = w*Vs where
artial integ r o v r 81y
Muvcontains products of waByG and HaBy' By means of Noether's theorem

this term reduces to a surface integral which can then be neglected.



CBPF-NF-058/85

-10-

Taking into account the freedom of four coordinate

conditions it is clear that Gguv contains six arbitrary

functions and we have as a ﬁatter of fact exactly six arbitrary
functions at hand with our gauge (13). Therefore, equation (18)
fixes this gauge.

The choice of constant lo in expression (18) is
obviously related to the fact that although it must be present
in Lagrangean (15), for dimensional reasons, this constant must
dissappear in the final Jordan's equation (8). We use natural
= 2

units h = ¢ = 1 and choose (arbitrarily) & - once

0 Planck
this is the unique scale which can be naturally constructed

with Newton's constant.

VI MAXWELL LAGRANGIAN

We have arrived thus at our first important result: by
means of the Lanczos field HuvA a Lagrangian can be constructed

wich gives rise to the Jordan form of Einstein's equations. The

only freedom left in the Lanczos field will be associated to the

electromagnetic potential Au = eHuAA. That is
9 A
(19a) Au-* " +¢,Ll
(19b) Huvk > Huvk + ¢,[ugv]A [ 1: antisymmetrization

all other gauges are fixed. We have introduced the electron
charge e for dimensional reasons.
At this point it should be mentioned remarkable property

of formula (9). Instead of dealing with Huka one can use huvk’

the traceless part of H and one obtains the same expression (9).

HVA
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That is, defining the irreducible decomposition

1

4 N
(20) Hpvk = hpvk'* 3 H[uogv]k

it is a trivial exercise to show that expression (9) can be

equivalently written with huvA instead of H That is

uvk'

(H] [h] .

WuBuv = Wuan

This means that Lagrangian (15) gives no information
for the dynamics of the trace part of Lanczos field. We then

add Maxwell's Lagrangian Ly to (15)

(21) L, = =

with £ = A -A .

DR AR
We have thereby united gravity with electromagnetism and we
note that exactly these two fields could be united within the

Lanczos potential.

VII  SALAM-WEINBERG GENERALIZED

We have pointed out in the preceeding section that
Lanczos field has sufficiently degrees of freedom to contain both
Jordan's potential (huvk) and Maxwell's potential (ALl = eHqu).

However, suéh (classical) result should not be res-
tricted to those infinite range interactions. We know today

that for instance, in general electromagnetic forces do not appear

in Nature independently: weak forces co-participate in their
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processes — and thus the traditional will of unifying gravity

and electromagnetism cannot be really accomplished if weak

(8,9)

forces are not taken into account . So, we must now show

that indeed it is possible to enlarge our scheme in this direction.

. (10
Guided by the success of SU(2)xU(1) Salam-Weinberg )

unification; we start by considering a set of SU(2)xU(1) Lanczos

A1) g

tensors HuA !

LVA in which (i) is an SU(2) index. Following

decomposition (20) we set

(i) (i) (1)
(22) Auvk = apvx * % A[p gv]k

(i) = A(i) gvA

u pvk and

in which gA

= I
(23) B = b + 3 B[ugle

HVA HVA

in which [dim g] = [dim g'] = [dim e].

Under a SU(2) transformation aét
(i)
HVA

i transforms as a

vector and A as a connection, that is

(1) . ~(i) _ -1
(24a) auvk -+ apvk = S avaS
Uy -1 1 "
(24b) Apvx > Apvx = S Auvk S -3 a[us ERET S
Buvk has a U(1) freedom:
f\l 1

(25) B +~ B = B

- 2 :
yvA pvk pvk 3va[pAgv]k )
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We define then the corresponding generalized Weyl tensor

(1) _ () (1)
(26) Wasuv = 2agufvl * Zuvia]s] * [(us) 9%

(1) (i) (i)
M T S a(ua)gvs (vB)gué}

in which
Bwrle = Bware T I A A,
;E) - a(i&osn0 ,
and also
(27 aguv = Paglusvl * Puviasel ¥ %E’(pe)gva ¥
b(va)guB = Pa)9vs T b(vB)gu;}
in which

We remark that in a complete analogy with the U(1) case we have
also:
(i) ijk ,J.k

(1) (1) J
it o alt) g ala
e wev T Sv,u 90 v
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The generalized Lagrangian which should include the
vector fields of the Salam-Weinberg theory, the gravitational
field, the interaction with matter and the coupling with a Higgs
bosonic field to become responsible for providing conveniently

masses for the fields is given by the sum of three terms:

_ [ 1 zaBuv @ aBuv

(28a) L1 = J/=det guv L_ 8 ( : 'WaBuv + C CaBuv) +

l+ UV l v

T4 Tuv T BuvB ]
(28b) I, = /-t g |+ R "y (g 7, - 9,7, + 3B ,)R
2 gpv 6 Y VA u UA v HVA
i UV_A - 3
3 L 2%y (gv}\Vu gulvv + 3T‘Auvx + 35 Buvk)%]

(28c) L

w
1

: 1 R <
/-det guv [% (Vu¢gvx - vv¢guk - 31T'Auvk¢ +

+ 3iwa¢’2 v ole*e)? - m2e*y - g, (E¢R+§¢*L)]

in which we are using the standard notation as in su(2)xu(1),

that is

1+Y5 Ve_
L = 5
e
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A simple inspection of these Lagrangians shows that
in the vector part (Ai;Bu) we obtain the standard theory of
electroweak unification.

Let us then turn our attention to the tensor part.

We remark first of all that due to property (11b)

LII reduces to

S : = U __]:1 : - U >
(29) LII = v-det v _[}RY VPR + iLy VuL + gLy TL.Au +

-1-—11 s U
- g (2 Ly L+RY»R)B}1] .

That is the pure traceless tensor parts disapear from L(2)' The

Higgs mechanism gives then masses for the (wﬁ,zu) bosons and the
0
tensors. Setting ¢ = “in which X = <0|¢|0> = constant
A+X/V2
and redefining the tensor fields by the expressions

2 Ly q

(2)

+  _ ZoBy 0By
(30a) Wqu = =
(3)
a + b
(30Db) 26y = o132 afu
apu /i
(3)
-a + b
(30¢) hygy = aBu aBy
H V2

we obtain from L the values for the masses

* £
m Wogy) =2
32 _
m (ZGB]J) = —2—>\ ’ m (hasu) = 0 .
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Knowing the value of A from the masses of the vector bosons, we

can evaluate that m (W;&) = 369 GeV and m (Z ) = 520,3 GeV.

oBu
Remark that the fact that we are conducted to rotate

(3)
aBp’baBp

(haBu) is a consequence of the absence of a previleged direction

by 45° the tensors (a ) in order to get a massless tensor
in the space of tensors due to the absence of any new constant
in the present theory. We should stress that this situation could
be changed without affecting the formal body of the present
model — although having distinct observational consequences. This
is a matter which should be regulated by future experiments.

The above remarks induce us to naturally associate the
massless tensor huvk to the long range gravitational field and
to the inclusion 6f new short-range effects of gravitational in-
teraction: the massive counter-part of it.

Let us make a final comment. After inserting the defi-
nition (30) into the total Lagrangian and looking for the equation
of motion for haBu we note that besides the standard Jordan's

expression; there appear extra terms envolving products of
+

aBu’
should be taken into account in the quantum version of the

+
tensors (W ZaBﬁ) with vectors (A&,Z ). Although these terms

o}

theory, its classical effects can be completely neglected since

it envolves point products of the short range fields.
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