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ABSTRACT

We discuss the fermioniq determinant of the two-dimensional
Schwinger model and QCD and a four-dimensional model.widraﬁﬁeu&>-
.-vectorial coupling. We observe that in both cases the Dirac ope
rator can be ex;pressed ag a path-ordered product of the gauge field
and compute exactly the fermionic determinant without reference
to a particulaf gauge. We obtain the two point Green's function
in all cases as a free particle two point function times a model

dependent term.

Key-words: Effective lagrangian; Fermionic determinant; Axial a
nomaly; Wess-Zumino actions.
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1 INTRODUCTION

The interest in the direct evaluation of fermionic determi-
nants has been renewed after the advances originated in recent works by
d'adda, Davis and di Vecchia, Polyakov and Wiegman(l) ' Alvr:lre.z(z),r Ros]u‘.‘es('s),

Gamboa Saravi, Muschietti, Schaposnik and Solo;min(z'); RelJter(S) r Naéﬁ(6)

and others(?)

. The evaluation of the fermionic determinant is an
important step towards a complete solution of the fermionic field
theory under consideration and important physical properties be
come exposed after integration over the matter fields. It also
sheds light on formal properties derived from éanonical proce~
dures(3’6).
In this work we analize massless two-dimensional Schwinger model and
OCD and a four dimensional Abelian and non-Abelian Dirac like theory with
massless férmions interacting with an external field through a
pseudo-vectorial coupling. In both cases, the Dirac operator can
be expressed conveniently: by exponentials of an integral of the
gauge field in the Abelian case, and by a path-ordered product of
the gauge field in the non-Abelian case; we compute the fermionic
determinant by the Alvarez method(z).

In two dimensional QCD the result of the determinant is a

(8)

non-Abelian extension of the Schwinger mechanism and an ef-

fective action which has one term with the form of the Wess-Zumi

no Lagrangian(g)

written in terms of variables defined on curves
as path-ordered products of the gauge field. In the four dimen-
sional pseudo-vectorial model we also find this kind of Wess~Zu-
mino Lagrangian plus several other terms.

We observe, in addition, that in all the cases analysed, sim

(4,10)

ilarly to the case discussed in Refs. , the calculated deter-
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minant .is the Jacobian of a chiral transformation(ll) and by this
observation we are able to factorize the two-point - correlation
function in a Green's function of a massless free fermion times
a factor which depends only on the external boson fields, exac-
tly as happens in the soluble two-dimensional Abelian models such

(8) (12) models.

as the Schwinger and Thirring

In Section 2 we discuss the two~dimensional cases Abelian
and non-Abelian, i.e,, Schwinger model and two-dimensional QCD
and in Section ~3. the four dimensional pseudo-vectorial models,

Abelian and non-aAbelian.

2. TWO DIMENSIONAL CASE

2.1 Schwinger model(a)

The dynamics of the Euclidean model is determined by the La

grangian:
do--1r F +FI+RY (1)
4 “uv uv
X t +
with YU =Yy v Au Au and
Ly Ys = £,y (2)
fuv T “Fvu

Note that due to property (2) we may express the Dirac ope-
rator of this theory as:
X X
'Ysaaﬂlégdzﬁ . "Vs5%qB IAadzB

. et

B-if+h e if e {3)
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where the righ hand side of identity (3) is written in operator

notation, i.e., let f be a function, then:

auf = (auf)-+fau (4)

We parametrize now the operator in (3) by using a real vari

able t(051:51) and construct the operator ﬁt as:

X X
-tYSEGBIAadZB _tYSEaBJAadzB
B, = e e - (5)
Note that ¢:=¢t=1 and ﬁt_0=13.

This operator has the useful property that(z)z

. a
B, = = B, = fB_+B £ (6)
with:

X
JAadzB (7

£ = Y54

We regularize the determinant of mt by the proper~time meth
od(13):

En detﬁi = -[ %; Tr[exp(-swi)] (8)
. _
with € an ultraviolet cutoff in the proper-time method.
Differentiating (8) with respect to t, using property (6) and

the cyclic property of the functional trace we get:
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di Ln det B! = zfds Tr[ﬁtﬁt exp(-sP?)] = 4J§s Tr[fmz exP(-SFi:)] =
t £
£
--4[as L rif oxpl-sp)1 = ATriE e (-B))] (9)
e 3

Integrating (9) with respect to t we get:

X
g det P 2J&tId2x"tr[f <x|exp(-eB2) |x>1  (10)
det 13 0 Y

with tr denoting the trace over the Dirac y matrices.

Y
The diagonal part of the heat kernel which we have in the

integrand of eg. (l1l0) for the operator in consideration has the

asymptotic small € expansion(la) tabulated(ls). The square opera
tor D! can be written as:

2 _ (i3 < 2 _ :

D, = (1au+tAu) tEWYSAv | (11)

and the diagonal part of the heat kernel for this operator has

the asymptotic small € expansion given as(ls):

<x|exp(-e¢§)|x> 1 4--E4€uvY53uAv+0(e) (12)

eXo
dne 4T

Substituting this result together with (7) in (10) and ne-

glecting surface terms we get:

PP-C A .-ljazx AA (13)
det i 2m L

It is worthwhile to mention that the correlation functions for this
theory can be easily computed with this method by observing that

the determinant is the Jacobian of a particular chiral transfor-
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mation involving the gauge field, as is done in reference (4).

2.2 Two dimensional QCD

The lagranglan of the Euclidean two-~dimensional QCD is given

by:

1l _a
Lop = ~F FoFay +TUB RV (14)
In order to proceed analogously to what we have done in the Abe-
lian case, due to the non-Abelian nature we must consider now
path ordered products and not the exponential of an integral. We

note that the Dirac operator in this case can be written as

P = i +X = lim U(c®;x,-») igU(c®;==,x) (15)
Ax+Q

with 1im denoting the limit for continuocus curve and

A*
. X, X . x=-1 .-.oo -00
U(c®ix,-=) = e YS&“BAaﬂB s asﬁxﬂ ’ - Y? “B ﬂB
(16}
Ysagha 85 TVstagha B YsCophuly
U(c 3—=°,X) = e o PP o e. ab- o

Here ﬁé is the i-th partition of the curve c® which goes from =
to x and Az is the field A, in the space-time point x.

Now, in order to construct an operator depending on a real
variable t (051:51) analoqously'to what we did in the Abelian

case we define:
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X,X x~1,x-1
-ty .E A A -YE A, TA ~Y:E B A,
Ut(cx:xt,—wl = e 5 afa B.e 57ag o B - 57aB"a "B
(17)
-, o .%x=1,x%x=1 X, X
-Y.E_ A A -YcE AX"a =ty .E_ A A
Ut(cxs_w‘xt’ = e 57af "o TB ..e 5 0B a 8 e 5 aB o B

Notice that the parameter t only enters with the partition AE.

We then define the operator ﬁt depending on the parameter t as:

=
n

X p. 4
¢ = U (Fix, ,—=) 17 U (*jmm,x ) (18)

such that:

P =1F+R = iﬁfb ﬁt_l {19)
The operator Et has the property that(z):
P, =— P, = fP_+P £ (20)
with:

X,X :
£ = -YSEaBAaﬁB {21)

In order to write the relation (20) in a form that makes

clear the limit for continuous curve, let us define:

v, = Vt(cx;-w,xt) (22)

with:
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-7 =
- - x -1 X, X
-E_LA_ A -g A® ~te ATA

Vt(cx:—m,xt) -e 0B B o aB®a B e: af o B (23)

Then £ can be written as:
£ =y Vv 1iav (24)
5t "t t

with ataa/at.

Regularizing the determinant of wt by the proper-time meth-
od(ls) we have:

£n det lﬂi = -J d+: Tr[exp(-swé)] (25)
€

Differentiating (25) with respect to t, using property (20),
the cyclic property of the functional trace and integrating with

respect to t from 0 to 1, analogously to what we did in the Abe-

lian case (Egs., (9) and (10)), we get
det Et_l 1
N ——— = 2IdtJd2x tr [f<x|exp(-eB§)|x>] (26)
.det ig o XY

with tr the trace over colour and Dirac y matrices indices.
exy

Let us define now:

= i Btz' t
ﬁt Yu(3u+ u} J-YpDu (27)

with

' = U (T ix, =) [FU, (Fimm,x, )] (28)
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In this case, the diagonal part of the heat kernel for the one

rator Et has the asymptotic small ¢ expansioélA) given as(ls):

<x|exp(—s’ﬁ§) | x> Yo ﬁr [% + 7B 4 Btﬂt-auB;-B;B; +0(g)) (29)

Substituting (29) in (26) we obtain:

det P .. 1
en —t=t _ 1 Idzxjdt tr [(FE)B" + £ B°B%) (30)
det i7 27 4 © cxY
but using (28) we have:
19 o 8%8%) - tr (£858) = tr (£B5BS) + w@OEH (D)
2 dt cxy CXY 5. 3¢ exy

and with (30) and (31) we may partially integrate over t o©ob-

taining:

det P :
tn—=L o L (ol oo - fae @t 2)
det if 27 2 cxy o exy

with B=pt=t.

We note at this point that if the group is Abelian we would
obtain thé result of two-dimensional QED since the last term in
the right hand side of (32) has null trace and the first term is
the Schwinger mechanism(6'8).

We may still calculate the traces over the Dirac y matrices.

For this purpose let us recall the definition of the right and

left handed fermion fields:
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(1+Y5)
2 2
(33)

2 L 2

In terms of these fields we may write:
TR X o xn-m
@Y = DU (c7ix ,~=) 48U (c7;—=,x )Y, + (R+L) (34)
Using the chirality of left and right handed fields:

7 -1 T R
TB ¥ = vV 1BV Y + P VO AFVO TRy (35)

with Vt defined by Eg. (22). Now, from (33) and (35) we obtain:

TBY = FLF+L +8, )V (36)

where:

¢ =3 v eviieh T

(37)

Y5 ot -1 -1,
¢, = = gD vy

t

It is easy to show that in the limit for continuous curve
the term ¢t goes to zero, remaining only Gt which gives the correct re
sult for lim P

A+0
performing the trace over the Dirac Yy matrices and the limit for

t_1‘=il+L. Then substituting (36) and (37) in (32},

continuous curve,we obtain:
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det P 1 (42 trn oot =2 -1 -
-8 s I ———— == 1@%x tr ((V [3 (V) 1 =-V"*[3 V])2} +
eff det i 87 ¢ c L H

1
4 . + F. -1 -2 o TR, S -1 ~-1
o Euv[dzxjgt FAUA A B A A T AR R Il FRA

(38)

with V=Vt=1
In the second integrand of equation (38) we have the following

term:

13
i 2 : -k e, -1 -1

.T.W__z =. - E}_de ngF tcr {Vt [auvt] v, [avvt]vt [3tVt]} (39)

Since we are considering the space-time as a large sphere and

nz(SU(N))=O (N >2), this last integral can be considered as being

performed on a solid sphere (B) with unitary'radius, having s? as

frontier, with the the two space-time and the parameter t (0<t<l)
as coordinates; we then may write:

I, = e, (a% extvI (0, v v (.V)IVT 0.V, )] (40)

w-z-217 ijk e  t it 't jtit k't

taking into account that for ial;Z,Bi represenf the space-time de

rivatives and for i=3, 3i=8/8t. It is important to observe that I, 2

has the.form of the two~dimensional analogue of the Wess-Zumino

1(9) written in terms of variables defined on curves as

-functiona
path-ordered products of the gauge field,
In order to study the correlation functions of the theory we

will perform the following transformation on the fermion field:
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Y00 > lim UM (Xix, =)y (x) = lim UTY p(x)
A+ A0

(41)

1 1

P(x) » T(x) Im U (c¥,—o,x) = § lim U_
' A+0Q A0
with U given in (16). We see by this transformation that the fer
mionic part of the lagrangian goes to a free field theory which
gives, when integrated over the fermion degrees of freedom, a field
independent constant times a Jacobian which turns to be the fermionic
determinant that we have computed.
Let us consider now the generating functional with the fer-

mion sources & and J§:

2(8,8) = Imoﬁnw exp{—[d2x1£qcn + By+ 90) } (42)
J

Perform the transformation (41):

%Z(8,0) = fJ DA DY Dy exp{-Idzx{fvizxp;E 1lim U:‘w;sw lim U:‘e -
A0 4+0

l _a _a
- % ) (43)

with:

nJ = ._Seff (44)

where Séﬁf is given by (38). Then differentiating with respect to
the sources and turning them off, we obtain for the two-point

correlation function:

<y (x)ﬁ(y} > = <y (x)ﬁ(y) POIDA iil(t)l [J-1 (cx;x,—w‘) iil‘([)l U_" (cy;_m,y) .
- -
1

- exp{-8 ¢; +sz-x 7 F%QFiv} (45)
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with <w(x)$(y)>o the free fermion Green's function. We find then
a quantum decoupling for the two-point fermion correlation func-

(4)

tion exactly as occurs in. two-dimensional QED .

3 FOUR DIMENSIONAL CASE

We are going now to consider a four-dimensional model, Abe~
lian and noanbelian, with fermions interacting with an external
vector field by means of a pseudo-vectorial coupling. This model
can be considered as a simplified version of the Weinberg -~ Salam

model for massless fermions.

3.1 BAbelian Case

The Lagrangian of the model is given by:
By = TLF-v Ky = Tpy (46)

The Dirac operator P can be written as:

X X
YS[A;dz YSJA.dz
- -0

B =iy K = e i1 e (47)

in operator notation, see Eg. (4).

The effective action of the theory is defined as:

=S oo (A)
e SfET annw exp(-Id‘*x;@M) _ gfndetd (48)
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In order to compute this effective action we parametrize the ope-
rator P by a parameter t (0 <t <1) as:
X X
CYSIA'az tY5JA.dz

ﬁt = @ i e (4%9)

This operator has the useful property(z):

B, = L8, = BB, + P Blx)Y, (50)

with

X
B(x) = JA.dz (51)

-0

We regularize the fermionic determinant by the proper—time
(13)

method

£n det EE = -I d?s Tr[exp(—swi)] (52}

£
Now, analogously to what we have done in Section 2, i.e, daif
ferentiating (52) with respect to t, using (50), (51) and the cy-

clic property of the functional trace,we obtain:

_51__ £n det Eé = 4[d“x tr{YSB(x)<x|exp(—eibé) | x>1 (53)
dt c :

According to reference (16) we have:

tr[YSB(x)<x|exp(-Eﬁ2)lx>] = B‘x)-(G§1)+Gé2)) (54)
Y t 32n?
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with:

2
t sﬁqayau(haasAY)

(1)
Gt

w e

| (55)
c(2) _ 4, (46°A A%+ed?A )

t 3 U
Substituting (54) and (55) in (53}, neglecting surface terms
and integrating over t from 0 to l,we get:

det P 1 y w1 2
_....=--—Idx(A +-2-Au8 Au) (56)

det if 6m?

~Segr = 41
The correlation functions can be studied in a similar way as
we have done in the end of Section 2. The generating functional

with fermionic sources & and § is given by:
Z(0,5) = IDWDI[J exP{—Id"x(£M+ 5y +90)} (57)

We perform the chiral transformation:

—Ysﬁ(x)
Y+ e ]
' (58)

- - YB(x)
y Ve >

Taking into account that the Jacobian coming from .this' chiral
change of variables is equal to the fermionic determinant we have
computed in this section, by the same reasons we have discussed
in the last section, the generating functional after this chiral

change goes to;:
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Y B(x) . =Y:B8(x)
2(0,8) = Iowmp exp'{—[d"x(éfffar‘é‘e 3 V+Te ° 8+ Pigy)}
(59)
where
M 1 1
etf = 75 3 A 2%A +n") (60)

The two-point Green's function can now be easily computed from

(59) and gives:
_ -YB(x) -y .B(y) -8
W) Ty)> = b FUy)> e > e > e °ff (61)

with <W(x)$(y)>o denoting the free fermion Green's function.

2.2 Non Abelian case

The Lagrangian of the model is given by (46) but in this case
the fields which appear are defined on some non-Abelian group. Fol
lowing what we have done for two-dimensional QCD we define a pa-

rametrized quann-mt with t a real parameter (0 <t <1l) as:

x x-m
B, = U (c7ix ,==) 13U _(c™;-=,x ) (62)

t t

written in operator notation {(see Eq. (4)), where:

X tY5Ax.ax YsAx"l.&x"l YE‘A'”.&"°°
Ut (C ?xtr-m) = e e sue &
(63)

0 (e x ) YSA WA tyY A A
t FTor t

]
0]
@®

1
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with Aﬁ and ﬁ; defined in the same way we have used for two-di-

mensional QCD. Note that

B = i(d-vsK) = lim B __, (64)
A0 T
Again, the operator ﬁt has the useful property that(Z):
Bo= LB =y BB, +B, B(x)y (65) -
t a t 5 t t 5
t
with
-1
B(x) = V. (3.V,) (66)
where 3t=3/3t and:
e e x~1 ,x-1 X X
Vv, =V (cx;-w,x ) = eA A ...eA -4 etA -4 (67)

Now, analogously to what we did in Section 2, regularizing
the determinant of ﬁt by the proper-time method, differentiating
with reépect to t, using property (65), the cyclic property of
the functional trace and finally integrating over t from zero to

one,we obtain:

det P__, .
tn — =1 - 2JdtJd“x tr [Y5B(x)<x|exp(-eﬁi)lX>] (68)
det ij 0 cxy

By the use of left and right handed spinor fields we may write:

B, = 2, +8&, (69)
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with:
¢, = o WAV, D + VBV ™))

{70)

s

n
1}

-1 # Fial.
{Vt-i[lvt]-vti[31vt) )} = iYSY G

It is easy to see that in the limit of a continuous, curve,i.e.

lim , the term ¢ goes to zero. Then according to reference(IG)

AL+Q
we have:

X

S, = tn-SetP 1 {dt[d"x trl8(x) P+ 5P (1)
e det i 1l6wx? lo ! ¢

with

H(1) 4 [l'v;

L r t .t tt
uvpoly uv e PﬁNApo : (G_G"v tv\,peOr VWGDGU)-l- GGy GGy
2y _ ,4 t 2 2 at ot
B =2 (a6 %Gu'Gqu}“ {(3.6,,(6)% += [G '3;\":11 ALVl +
2 .2 t t t, .t
+ 27,8 + 46y (2,GLI6]] (72)

3

where

I -
Vv ¥ [6,,6,]
(73)
t - t t
" auGu"avGu

Note that we also have taken the limit for a continucus curve.

It is important to observe that from all the terms in

(1)

H we édbtain a . contribution in (71) with the same form of
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Wess-Zumino functional(g)

written in terms of Vt.
Again, as we have done to study the two-point Green's func-
tion in two-dimensional QCD and in the Abelian four-~dimensional

model we can easily show that the two point Green's function is:

- -8
<P {x)Ply)> = <q;(x)$(y)>o lim v (c®x,- ) lim U_1 (cX;-»,y) e eff (74)
AL >0 Al=>0
where
-1 x -1 x
U (¢ ;i;x,-=) = Ut=1(c ,xt=1,-“) (75)

and we also see in this case the decoupling of the fermionic sector.
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4 CONCLUSION

We have presented in this work the results of calculations
on several field theoretical models perfofmed through a method
which can be considered as a new extension of the one introduced
by Schwinger more than thirty years ago. The ingredients are ba-
sically the same for the regularization, the main improvement
being the adoption of developments from functional an&hmusgﬁ’lsl

The calculation of akial anomalies proceeds quite naturally
with this procedure. At the same time, is an alternative that en
compasses the procedure introduced by Fujikawa(g).

The method is also an alternative to the calculation through
the regularization of operator determinants by ;Afunctions(s).
It seems easier to handle, and in some cases physical information
appears more transparently.

By this we specially mean that we have been able to intro-
duce almost naturally string-like extended structures. The re—
sults seem to improve on previous work, and look in better agree
ment with what should be expected on theoretical grounds(17) as
a natural path to develop an effective lagrangian for hadronic
systems at low energles, from the starting point of a non-abelian
gauge invariant lagrangian. The path dependence of these struc-
tures is easily disposed of by construction.

A finer point to be better understood is the connection with
the results of this article with the "true" (yet unknown) me-
chanism operating for the breaking of chiral symmetry. The effec
tive lagrangians referred above condense a lot of information ob

tained through current algebras. The content of the lagrangians
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coming from the fermion determinant is determined by the non in-
variancé of the measure of the functional integral under chiral
transformations, and is essentially determined by the small dis-
tance behaviour of the relevant operators. This curious interplay
between short distance and long distance features seems to be a
clue for the understanding of the dynamical content of gauge the

ories.
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