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Abstract

Why is space three-~dimensional? The first answer, entirely
hgsed on Physics, to this question, was given by Ehrenfest in
1971, wholshcwed.that the n-dimensjonal solar system cah be
stable only for n = 3. Following this approach, Tangherlini
showed, in 1963, from quantum mechanics, that this is the case
also for Hydrogen atoms. In the présent work, we critically re-
view the epistemological consequences of the use of the stabili
ty postulate to derive spatial dimensionality. An .alternative
procedure to get at it, in which the stability postulate (and
the implicit singularities in three-dimensional physics) are
not an essential part of the arguments, is proposed. We are then
led to discuss the n-dimensional quantum theory as expressed ~.in
Plank's law, de Broglie relation and Heisenberg uncertainty re-
lation. From these results we discuss a possible experiment, ba
sed on thermal neutron diffraction by crystais, to directly measuse -
the dimensionality of space. Also, frqm'the black-body theory,
as applied to the Sun, it 1s shown that .the existence of life
on Earth is possible only if space, in the heighborhood of the
Sun, has been thhee—dimensional in a cosmic time scale. Finally,
the distinguished rdle of Maxwell's electromagnetic theory in the
determination of space dimensionality is stressed."Metric" ver-
sus topological" arguments are compared and shown to apply res-

pectively to "matter" and "fields",

Key-words: Dimension] Space dimensionality; Anthropic principle;

Stability of the world; Neutron diffraction; Wein's law.
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1. Introduction.

In this paper we discuss the dimensionality of space as
a physical problem.

At first sight this problem could be approached, in a
fruitful way by simply asking the question: why is space
three-dimensional? However, on second thought, it is clear that
this formulation is narrow éinded since the three-dimensionality
of space is assumed as something given a priori perhaps by our
sense organs, especially vision. We shall come back to this
po{htclater, but now it suffices to say that our interaction
with the external worild (via our vision) is essentially
electromagnetic and that Electromagnetism implies a
three-dimensional world, as we will see below. Now, in Physics
we are not restricted to our direct experience of the external
world, i.e., to our sensory perception. So we can investigate
the problem in a much more profound way by freeing ourselves
from our sensory prejudices and trying to answer the following
complementary questions: i) How does it become manifest in the
fundamental laws of Physics that space has 3 dimensions? ii)
How deo the fundamental laws of Physics entail space
dimensionality? These two questions will be discussed throughout
this paper both by critically reviewing the existing literature
and by proposing new approaches to this problem.

Some readers may find somewhat "unpleagant” in this
paper the several digressions and some apparently "unnecessary”
repetitions. We hope that this feeling will disappear by the
time we come to the conclusions, with the realization that these
digressions and footnotes are indeéd necessary and that, often,

they are there to clarify points which would, otherwise, remain
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somewhat obscure. In this perspective, they are, in fact,
fundamental to our final discussion.

Before proceeding and entering more deeply inta our
subject we must first clarify some points which more plaiﬁly
define our conceptual framework.

We begin by considering that the dimensionality of
space is not a contingent feature. To accept this means that
one must search for a general methodology capable of determining
it. A fundamental ingredient is necessarily the possibility of
thinking about higher dimensional space, which is provided by
the works of Lubaéevskij, bolvyai, Gauss, Cayley, Grassmann, and
Riemann {12, but as we will see helow this is not sufficient.
Although at early times the physical soundness of this kind of
generalizations was continuously questiunedi, there is nowadays
a kind of general consensus that theories in higher dimensions
{mhen supplemented with dimensional reduction) may provide a
promising <framework for a deeper understanding of very
high—energy physics. However, it is clear that the very fact of
Iimposing the process of dimensional reduction in a given
higher dimensional theory is equivalent to assuming a priori the
dimension number 3 as a natural property of space, which is
just what we are querying. To the best of our knowledge, there
is as yet no satisfactory and unambiguous answer to the problem
of dimensional reduction in the framework of these theories,
even when the so called spontaneous compactification process is
taken into accnuntg. Thus we need to propose some physical
argument to introduce another fundamental ingredient which,
together with the former, will allow us to start the
discussion of whether this number is indeed 3 —-— but not

necessarily to determine it. This ingredient will be provided
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by the realization that a particular physical law is intimately
dependent on the number of space dimensions. Historically,
Kant ‘s conjecture [2] that the three— —dimensionality of space
may, in some way, be related to Newton's inverse square law has,
indeed, opened a new way for the study of the problem of space
dimensions. The main contribution of this conjecture to this
problem is thus the suggestion that it can also be treated as a
physical problem and does not belong exclusively to the domain
of mathematics. It is relevant to stress here that, in spite of
the importance of this conjecture, its physical support (if any)
is yet to be understood.

Usually a third (and decisive) ingredient is always
required to suggest a method which effectively connects the
number of dimensions to some physical property. This is the
most delicate part of any method one can propose for discussing
the problem of spatial dimensions, which will be carefully
examined throughout this paper. Here, only the physical aspects
af this problem are discussed and, in particular,
epistemolegical consequences of Ehrenfest’'s methodology aimed at
fixing the number of space dimensions based on the so called
"stability postulate" (see Section 2) are critically discussed.
Some of the fundamental ideas related to the physical nature of
this problem and to the question of the physical relevance of
spatial dimension — treated from different points of view [3]
—— will alsoc be briefly reviewed in Section 2 but, before
discussing any principle that could be used toc determine space
dimensionality, we would like to say that we are convinced that
it is impossible to disentangle questions concerning this
subject from some kind of formalism representing a physical law.

A= Jammer put it (413 *... Hence It iz clear that the structure
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of the space of physics is not,(...), anything given in nature
or Independent of human thought. It is a function of our
conceptual scheme". This means that we accept that the physical
concepts and the concept of reality itself acquire sense only
within a theoretical construction where they can be discussed and
realized. When the problem of space dimensions is considered, we
must carefully examine the consequences of this fundamental
peint. Although this point has, in fact, motivated several works
on the problem of spatial dimensions, it is in itself, at the
same time, one of the main difficulties for the discussion of
this problem, because the three-dimensionality of space is not
questioned a priori when a physical law is established. This
essential difficulty would be bypassed if we were able to prove
the validity of the physical law in qguestion whatever the
number of spatial dimensions under consideration, rather than
simply postulating it. The main aim of this paper is exactly to
develop this point.

Concerning the origin of the results one may arrive at
by discussing the problea of the number of dimensions in the
way prescribed above, there is a straightforward and very
important consequence we would like to emphazise, namely: the
mathematical structure of the formalism one is considering (or
simply a given physical eqguationis)) is the causa formalis of
the constraint obtained on the number of space dimensions.
Actually we tend to consider this as the unique approach to
start discussing the problem of the space dimensionality and
this is essentially related to Jammer ‘s idea recalled above.
Thus this epistemological limitation seems to be inherent to
this problem (so far as we understand it) and, in a certain

sense, is well illustrated by Grassmann's words [5) @ “"The
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concept of space can in no way be produced by thought, but

alwmays stand=s over against it as a given thing. He mho tries to
mantain the opposite must undertake the task of deducing the
necessity of the three dimensions of space from the pure laws
of thought, a task whose solution presents Iitself as
impossible".

This paper is organized as follows. In Section 2 the
present status of what we can learn from the formal extension
of the number of space dimensions is discussed. Particular
attention is given to Ehrenfest ‘s and Weyl 's contributions to
this subject. A brief comment on the reality criterion
associated with the "extra dimensions” in theories at higher
dimensions is also presented is this Section 2. As a result of
the criticism of the use of the “stability postulate”, carried
out in Section 3, an alternative approach to get at the proper
dimensionality of space is presented in this same Section. 1In
Section 4 it is shown how the task proposed in Section 3 can be
carried out by considering a particular transition R{- Rhfnr the
case of the black body phenomenclogy. This enables us to
"demonstrate” the validity of the de Broglie relation for any RQ
This is the basis of Section S, where thermal neutrons
diffraction by crystals is presented as an example that
completes the procedure proposed in Section 3. An upper limit
for the dimensionality of space is therefore obtained. Some

conclusions are drawn in Section 6.
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2. #Hhat ore expects to Iearn frowm the transition"z-*"?.

Az a first example, we can quote Ehrenfest ‘s
fundamental papers [4]1. There, several physical phenomena, where
Qualitative differences between thre=e—dimensional (Rs) and other
n—dimensionxl (‘fB spaces were found, have been discussed. These

3 h
physics from the R one, are

aspects, which distinguish the R
called by him "singular aspects" and his works were aimed at
stressing them. A crucial assumption is built in the main ideas
contained in (4], namely, that it is possible to make the formal
axtension RS—PRH’ for a certain law of physics and, then, Ffind
one or more principles which, in conjunction with this law, can
be used to single out the proper dimensionality of space. For
this approach to be carried out, in general, the form of a
differential equation —— which usually describes a physical
phenomenon in a three-dimensional space -- is mantained and its

validity for an arbitrary number of dimensions is postulated.

For example, the Newtonian gravitational potential for an

[ o8

R—space, Vir) & rz " y is the solution of the Laplace-Poissaon
equatiun,i atV/r)x:-t kF, in an n-dimensional sgspace. Based on
this gene;;a solution, Ehrenfest has umsed the postulate of the
stability of orbital motion under central forces to get at the
proper number of dimensions. In Ehrenfest’'s approach this
additional postulate acts, therefore, as the causa efficiens
of the dimensionality of space. It is just this part of his
method the object of criticism in Section 3.

This general procedure is also followed in the work of
Whitrow [71. The importance of this approach was noted by

Tangherlini I[81 who proposed that, for the Newton-Kepler (N.K.)

"
problem generalized to ﬂ? space, the principle to determine the
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spatial dimensionality could be summarized in the postulate that
there should be stable bound state orbits or "states" for the
equation of motion governing the interaction of bodies, treated
as material points. This will be generically called from now on,
the stability postulate. In his first paper [B.al Tangherlini
showed that the essential results of the Ehrenfest-Whitrow
investigation are unchanged when Newton’'s gravitational theory
is replaced by general relativity. In this same paper, the
Schroedinger equation for the hydrogen atom in n dimensions 1is
also considered. The above postulate, in conjunction with the
assumption that the fields produced by the nucleus
asymptotically approach a constant value at “large distances”,
gives n=3 in both cases. Thus the three-dimensionality of space
digcussed within the framework of Newtonian mechanics [&4-71 or
general relativity [B1, and also quantum mechanics [B.al] ({using
a Coulombian potential), seems to be a result valid for a very
large range of spatial scale -—— we will turn to this point in
Section 4. This briefly reviews how the "stability postulate" is
used to throw some light on the problem of spatial dimensions.
From another point of view, these attempts based on
stability arguments belong to a class of arguments
epistemologitally different from that contained in the work of
Weyl [91}, which we shall briefly review here. His basic
approach was to construct a new unified theary of gravitation
and electromagnetism based on a gauge-invariant non-Riemannian
geametry. In this scheme>Wey1 pointed out that there is a strong
relation between the metric structure of space-time and physical
phenomena, which could lead to a deeper understanding of
Maxwell 's electromagnetic theory as well as of the four.

dimensionality of space-time. Weyl showed that only in (3+1)-
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dimensional space-times can Maxwell 's theory be derived from a
simple gauge-invariant integral form of the action, having a
Lagrangean density which is conformally invariant. This could be
considered as an example of how a set of physical phenomena,
here syn;hesized by Maxwell 's theory, could be used to impoze
some restrictions on the dimensionality of EpaCEB. The structure
of Maxwell equations and the gauge principle are, respectively,
the causa 7Formalis and the causa efficiens of the

four—~dimensionality of space-time. The two essentially different
talthough complementary) features of Ehrenfest’'s and Weyl's
methodology can be summarized as the difference between the two
following questions: (i) How does it become manifest in the
fundamental laws of physics that space has three-dimensions, and
{ii) How do the fundamental laws of physics entsail spatial
dimensionality? All work based on the "stability postulate”
hinges on the former qgquestion because the constraint on n is
reached as a consequence of a "singular aspect” of a physical

3 . n
law that is supposed to be still valid under the transition R-RK.

The latter is implicit in Weyl's work where the structure of
Maxwell theory cannot be mantainedqif n$+3. The sacond question
can be well illustrated by the concluding paragraph of
Tangherlini ‘s paper [B.al, where he says: with Turther work, we
may come to regard n=3 as an eigenvalue.

However, even from a classical point of view, Weyl's
demonstration of the four-dimensionality of space—-time is not
complete: the gravitational law should also be derivable from
the same requirements of invariance as for electromagnetism. The
point is that although Weyl's unified theory is a good place for
giving an answer to the problem of spatial dimensions, it should

be mentioned that this theory has been criticized in the
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literature [10]1. In any case, in order to consider complete such
kind of demonstration, today we must clearly take into accont
also strong and weak interactions. We will turn later to
this point at the end of this Section.

Other attempts to create a geometry in which the
gravitational and electromagnetic potentials together would
determine the structure of space were carried out. An example is
Kaluza-Klein theory [111 —— which is presently enjoying a great
revival of popularity in connection with the modern theories of
supergravity —— where the number of components of the metric
tensor was increased by changing the number of spatial
dimensions. A fifth dimension was added to the wusual four
dimensions of physical space-time. In the work of Kaluza, the a
priori four=dimensional character of the physical world is
assumed when the author 1looks for a suitable choice of
coordinates, in such a way that the components of the metric
tensor be independent of the fifth coordinate. In other words,
this coordinate has no direct physical significance. Thus it is
quite clear that this kind of approach to a unification program
could not lead to a satisfactory answer to the problem of
spatial dimansiansz. However it should be said that an argument
aimed at showing that a necessary condition for a unified
field-theoretic description of gravity and electromagnetism implies
that the world be four dimensional, as discussed by Penney [121.
The four dimensionality of space—-time is also required by
Schonberg’'s [133. In this interesting work an electromagnetic
foundation for the geometry of the world—-manifold is proposed.
Einstein’'s gravitational equation appears as complementing the
set of Maxwell equations, giving rise to a natural fusion cof the

electromagnetic and gravitational theory. The electromagnetic
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theory is formulated in a differentiable manifold devoid of
any metric ard affine structure. In this formulation there is no

F *
a priori relation between and FT y iInvolved in the

v /A\J
homogeneous and non~homogeneous Maxwell equations, respectively.
The foundation of the four—-dimensionality of the world-manifold
(space—-time) is given by the structure of the Maxwell equations
*
in terms of the two basic tensors FT and F: y which are both
AV Ay
antisymmetric covariant of the same order. It is important to
stress that, in this approach, the four-dimensionality of the
space-time is essentially associated to the differential
electromagnetic equations, without any consideration about the
#*
relation between FT and Fﬁ and without requiring a
Vathd AV
metric—-space as in Weyl ‘s work.

There are other attempts to unify not only
electromagnetic and gravitational forces but all the fundamental
forces, considering space-time with a high number of dimensions
as,for example, supergravity or the ten-dimensional space-time
superstring theory [14]1. But, whenever the problem of space-time
dimensionality is considered in the framework of these (super-)
theories, we face the problem of the physical reality of these
"extra" dimensions. Independently of any particular theory, as
peinted out by Mansouri and Witten [13], if we wish to take the
physical existence of the extra dimensions seriously, we wmust
develcop a systematic method for studying the eftrtects of the
extra diwmensions (...} Since there is no evidence Tor the
existence of the extra dimensions at the shortest distance which
can be probed at present, it (any such method) must explain how
this can be attributed to some intrinsic property of a higher

dimensional theory. It must (also) provide a quantitative method

for studying the consequences of the dependence on the extra
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dimensions. Complementing this picture we can always ask whether the
ten~dimensional superstring theory, for example, can tell us, in
a straightforward and unambiguous way, that we are living in a
("almost flat") four dimensional space-time. The fundamental
question is; why dimensional reduction? Up to now, the answer
to this question, i.e., the four—-dimensionality of the physical
world-manifold is vyet, in the 1last analysis, an ad hoc
ingredient in these theories.

On the other hand, it was shown [3.d] that only for

space—time dimensionality greater than four, the fundamental

constants of electromagnetism {(e), gquantum theory (h), gravity
(G) and relativity (c) are all included in a single
dimensionless constant -- which should have, in & unified

theory, a similar role to that played by the Sommerfeld constant
ezfﬂc in the quantum electrodynamic theory. Thus the apparent
necessity of going to a high dimensional space-time , in order
to carry out the unification program, brings with itself the
problem of how to explain all the well—known phenomenological
manifestations of the four-dimensionality of space—-time in the
framework of this new theory, and the question of the reality of
the "extra dimensions": both are clearly still open questions in

physics.
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3. Criticism of the use of the stability postulate.

We can ask if the "stability postulate" -—- applied to
the N.K. problem or hydrogen atom — is actually a good choice
for deriving the spatial dimensionality or not; or more
specifically, if we can really prove that n=3. We understand
that the use of this postulate enables us only to exclude the
possibility of having a class of natural phenomena in a space
other then our own, with an arbitrary dimension, as pointed out
by Poincare [16&]. Then, when we consider the example of the
hydrogen atom, as described in Section 2, the results obtained
from that postulate must be stated as follows: there is no jQ“
other than ﬁzawhere the phenomenon under study is described by
a generalized Schroedinger equation that has the same form as in
the case n=3, and whose solution is also stable —— and that is
all. Indeed, when Ehrenfest used the Bohr atomic model for the
hwydrogen atom, the stability of matter in three dimensions was
already assured by the postulate of angul ar momentum
quantization, and this justifies the term alse underlined
above. The fact is that he could not have used Rutherford’'s
model —— which is clearly unstable in ﬁf -— plus the stability
postulate to derive the number of dimensions as being just 3,
Thus n=3 is a priori +favoured in this case. Apart this
feature, it is clear that it is only when the formalism,
previously generalized to an n-dimensional space, presents a
singular behaviour under this generalization, that the
*"gstability postulate” can be used as a method to fix the proper
dimensionality of space. The range of applicability of the
"stability postulate” is therefore strongly restricted to a very

particular class of formalisms. Moreaver, these two intrinsic
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characteristics of this method clearly do not solve the
essential difficulty discussed in Section 1 and, from the
epistemological point of view, show that the use of the
"stability postulate" to fix n is not satisfactory.

We can now ask if we cannot imagine a phenomenon or a
physical state that could only he stable in amf?huith n>3, but
described by an equation having the same form as in ﬂ?a, and
analyze the conseguences of this assumption. For example, we can
ask why we do not observe in a Stern—-Gerlach [17] experiment the
dissociation of a beam of sapin 1/2 particles in more than two
lines., Or, in other words, is the stability of these particles
(e.g. electrons), described by a Dirac—equation, a manifestation
of a particular space dimensionality? Particles having higher

3 ! 3
spin must be unstable in R y while stable in some R ok R and
so, having a mean lifé:;ime so small in three dimensions this kind
of experiment could not be carried ocout. This conjecture could
indicate that if the "stability postulate" were applied to the
evolution of a massive spin 3I/2 ﬁarticle, described by a
(hypothetical) Dirac-like equation, the number of spatial
dimensionsderived could be greater than 3! This is an example
where the results obtained by using the "stability postulate” do
not depend on the form of the equation but, instead, on what
kind of aobject this equation describes.

The alternative principle we want to propose may be
stated as follows: "Given a formalism in a certain dimension,
{usually three) we must, based upon its fundamental equations,
ask whether other forms {(or equations) are valid in a higher
n-~dimensional space for all n, rather than simply postulating
the validity of the same formaliam in a different dimension". In

other words we shall not be concerned only with formalisms which
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are singular in a certain n (usually three). On the contrary, we
shall look for situations which do not prasent those
singularities. Then this alternative principle could be used to
discuss the spatial dimensionality (Section 4). It will
certainly describe several phenomena and their observability
could be used for that purpose. It is clear, however, that, in
this case, the constraints obtained will bhe weaker than those
cbtained when the "stability postulate", or the search for
singular aspects of the transition }?{*‘ﬂ?: are considered.
Nevertheless, this procedure hazs the advantage that we can
guarantee a priori that the fundamental law, used to describe

a certain kind of phenomenon, is valid for any'ﬂ?:which is not

possible in other procedures as pointed out in Section 1. Then,
when this alternative procedure is applied we can conclude: the
dimensionality of space is a number included in a certain

range —— 3 need not a priori be favoured.
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4. Black body phenomenology:r a non singular aspect of the

3 n
transition R —» J? -

There are several physical 1l1aws in which the
dimensionality of space affects the results, but the transition
Rg—o R“ does not have a "singular® behaviour, and thus these laws
were not discussed in the works of Ehrenfest [&61. An example is
Wien’'s law which, in its generalized 'Form:, becomes (9= \’}(V/T).
However, we would like to point out that, although this

/
transition has no "singularity", the black body phenomenology
extended to R“ contains an important feature that must be
emphasized. Indeed we can use it in order to “demonstrate" the
validity of the de Broglie relation in other ﬂZ“, as will be
shown now.

I1f we assume Planck'’'s energy quantization to determine
the explicit form of the function F, we still +find that the
energy of a quantum is €=hy, for any Rn. This is easily seen if
we remember that the enerygy eigenvalue of the Schroedinger
equation for the harmonic oscillator gives Planck’'s result up to
the ground state energy. The transition to iémnnly changes this
energy value from 3hV/2 to nhVv/2, and then Planck’'s hypothesis
is still valid, i.e., the quantum energy is proportional to the
first power of the frequency Y . We note that this result
tlearly depends on the classical potential energy v=kxl /2 used
in the Schroedinger equation, and a brief digression about it is
necessary.

When a spring is displaced From the equilibrium
position, we learn from the experiment that, for small

displacements, the restoring force is proportional to the

displacement, and that is all. It does not matter in which
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direction the displacement takes place and the problem can be
called a quasi one—dimensional problem. The result is the same
in one, two or three dimensions and this is quite different from
the Newtonian-Keplerian potential, for which a gqualitative
3 <

difference among ﬁ? and }2 exint £6]1. Thus we can expect that
the form of Hooke's potential could be the same for all A?T
However, even if this is not true, but if the generalized
potential has a2 minimum, we can always approximate it by the
harmonic potential, in the case of small oscillations, whateverﬁ?
is considered {(a particular case of Morse theorem). After this
note,we can turn back to the original problem.

We can still assume that the energy trapped in a cavity
(a model for a black body) corresponds to the energy of a
collection of "photons” which must satisfy Einstein's relation

F4 "

M=ggprpv, generalized to K ~— it is the same kind of
generalization made for the potential energy, where only the
number of components of the metric ( the scalar prnduct) was
increased. By imposing that a guantum must also satisfy the
above relation, it follows immediately that the de Broglie .
relation ,K = h/p is valid in any izh, because Planck's
quantization law did not change. Thus we can also conclude that,
as the de Broglie relation is exact in any ﬁan, the momentum p
of the particle cannot be a function of its coordinate x, and so
we should expect that Heisenberg’'s uncertainty relations are
also valid [18]1. This result, in a certain sense, properly
supports the initial generalization of the Schroedinger
equation, as it should be expected that the equivalence between
Heisenberg’'s and Schroedinger ‘s pictures must be mantained for
other Rﬁ » This feature is a self-congistency test for this

generalization, which, to our knowledge, has not been used in
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the past literature.

So, it has been shown in this Section that even though
the transition l??:-’ Rh does not show "singular" aspects, there 1$
a case in which we can still perform it {(justified a
posteriori) and conclude something about the validity of other
physical law in ﬁr. The advantage of this procedure was already

discussed in Section 3.

We will now apply the result of this Section to =a
particular physical effect -~ the possibility of having thermal
neutron diffraction by crystals in an Rn space. It is
essentially explained by the de Broglie hypothesis and then an
upper limit for spatial dimensionality will be obtained, based

on the general arguments presented in Section 3.
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5. Thermal neutron diffraction by crystals as a w=means for

obtaining an upper limit Tor the spatial dimensionality.

It is well known that a thermal neutron beam falling
onto a crystal lattice gives rise to diffraction phenomena (191
== known as "neutron diffraction" —— analogous to those observed
when we use incident X-ray beams. The passage of thermal
neutrons through matter gives rise to scattering processes which
are most readily uwunderstood in terms of the wave properties of
the neutrons (201. We define as "thermal" a neutron whose
kinetic energy corresponds to the mean energy of thermal
agitation at temperature T. Usually we can write pz/2m =z EKBTIZ,
where the factor 3 arises when we consider ﬁ?—spa:e and only 3
degrees nof freedom, corresponding to translational motion,
are assumed for the neutron, i.e., by hypothesis, one does not
take into account any internal degree of freedom. Therefore, i+
we assume the energy equipartition theorem to be still valid for
an ﬁ(tspace, each degree of freedom will contribute with KBTIZ
and the factor 3 should be replaced by6 M.

Since the classical thermodynamic laws do not show
singular aspects concerning the Rs—-ﬁn transitinn} it is
still possible to thermalize a neutron beam in an A?tspa:e. Thus
the de Broglie wavelength associated to the neutron is A,ﬂ h/p,
vhere p:;tanGT;tl From now on )k will be considered as a
function of both the dimensionality of space and neutron

velocity ("temperature"), with n being a parameter to be

determined. The starting point is, therefore, that neutron
thermalization may occur in an n-dimensiocnal space. The
subsequent process — neutron diffraction —— simply acts as the

detection of something that has happened inside a nuclear
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reactor, for example. To measure A use will be made of Bragg’'s
law [21].
I1f d represents the grating spacing the caondition for

coherent reflection is given by Bragg’'s law
Ed Eine- fA '] £= 1'2'3‘00-

For diffraction patterns to be observed, the wavelength must be
of the order of magnitude of the mean distance between
crystallographic Bragg planes (which in ﬁf—space are given by
the so called Miller indexes [22], easily generalized to Rn),
but can rot exceed 2d. In this case Bragg's law has no
solution for integer.ﬂ and there is no diffraction pattern.

The distance d can te measured by using X-ray
techniques and thus is independent of the dimensionality of
space, i.e., for X-rays the relation p x»(anBT)%', valid far
massive particles (as neutrons, helium atoms, hydrogen molecules,
etc.), is obviously not valid any longer,

We can then conclude that, in an Rﬂ-—spa:e, diffraction
gratings [23)] do exist —— the spacing grating being independent
of n — and it is possible to thermalize a neutron beam. However
it is still possible to "measure" n even in the 1limiting case
where a "one—dimensional crystal” is used as a “"rod" because.x
is, by definition, “"one—dimensional" and the knowledge of n
comes through the measure uFA“ Thus the above requirement that
diffraction gratings exist in ﬁ€15eem5 to be superfluous., In any
case, the 3-dimensionality of the macroscopic crystal does not
necessarily say anything about the space dimensionality of the
microscopic characteristic length of thermal neutron production.

This information is carried out by the neutron and will be



CBPF-NF-054 /86

~20~

revealed by the crystal lattice. To make the point, we are
taking into account the possibility that the space
dimensionality may be dependent on the spatial scale {or energy
scale) we are probing.

In its application to solid state problems, neutron
diffraction is similar in theory and experiment to X-ray
diffraction but, in fact, regarding some particular aspects,
they could be considered as two complementary techniques [201.
The experimental apparatus we will consider consists of a
monochromatic neutron beam {(obtained with usual techniques
£20.b,c3} and a crystal. The mean distances between the Bragg’'s
planes are measured by using X-ray techniques. Given a certain
crystal one tries to determine the larger value of these
distances which, in general, lies on an axis of symmetry of the
crystal. The neutron beam is then sent on the crystal in such a
way that it will be diffracted by the parallel planes having as
relative distance the aforementioned value. The advantage of
this procedure will be soon understood.

It is well knowm from optics that, even when the number
of slits in a diffraction grating is not very large, the
intensity of secondary maxima in the diffraction pattern is much
reduced, compared with the intensity of principal maxima [231.
In the case of neutron diffraction by a crystal one has a very
large number of "slits" —— the mean intervals between atoms —-
which, clearly, renders difficult the experimental observation
of a high order spectrum. But this does not mean that they could
not be observed in principle. From Bragg’'s law it follaows that
to have a second order spectrum we must have‘X~< d;y for a third
order one we need )t( 2d/3, and s on. The condition for having

a diffraction pattern with only the f?—th. order spectrum is,
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therefore, 2/(ﬂ+1) $‘A/d £ 2/ﬂ. The possible ranges for the
neutron wavelength are then always different and this is an
important point, as we will see now.

Suppose one can vary {(increase) the number of spatial
dimensions for a given constant temperature; for example from
n=3 to n=12. Aﬁikhis proportional to i//n, this corresponds to
dividing the wavelength by a factor 2 and, therefore, it is
equivalent to going from a spectrum of order Z to one of order 2f.
This fact, naturally, strongly suggests that one should observe
the first order spectrum, as far as one is looking for an
upper limit for n. We can, thus, perform a gedarken experiment
where it is possible to prepare a monochromatic neutron beam
satisfying the condition d\<>\.$ 2d, by varying the neutron
velocity and, cnnsequently,)\, which assures us that no higher
order spectra are present in the diffraction pattern other than
the first one. Only if one can change )\ by a factor 2 and still
have the same order diffraction pattern is cne sure that it is
the first order spectrum that is observed, because we must
remember that we are taking n as an unknown quantity. After
being sure that this is the case, we can then use the relation
>\= h (nmk T;ltfnr determining n. Therefore, we can conclude that

8

the observation of thermal neutrons diffraction, under the
condition d g >\$ 2d, can be used to measureg n.

We shall now analyse the available experimental data.
It is known from X-ray measurements that a typical value for d
in crystalline solid i=s d 2,1640 m and the characteristic
temperature is T~ 300 K. For neutron beams, from what has been
said above, both values are independent of space dimensionality.

This is the fundamental fact that allows us to use d S )\ £ 2d,

which gives us the approximate limit n £5. For a fixed value of
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the temperature, one may ask whether a particular crystal
whose d value is such as to test n=3 does exist,

The wave aspect of the phenomenon discussed in this
Section might lead to supplementary restrictions on the value of
.

In classical physics, diffraction effects can be
explained on the basis of a wave theory by the application of
Huygens’® construction together with the principle of
interference. In th—space it is well known that Huygens’
principle does not hold [243. 1t should also be noted that
Hadamard L[25] has shown that the transmission of wave impulses
in a reverberation—free fashion is possible only in space with
an odd number of spatial dimensions and, in these cases,
Huygens® principle is valid for single differential equations of
second order with constant coefficients. However, Hadamard's
conjecture states that this theorem holds even if the
coefficients are not constant [246). The Huygens’' principle is
then expected to be valid in any ﬁzn—space where n is odd. Now
we shall assume that the classical results discussed in this
paragraph remain valid when we consider the diffraction of
matter by crystals —— traditionally explained by de Broglie's
hypothesis within gquantum mechanicé“i This point is far from
trivial and is now under investigation. The difficulty comes
from the fact that Hadamard‘'s results apply to d Alembert
equation, of hyperbolic type, while Schroedinger equation is
parabolic. Sa, within the above assumption, we can conclude that
thermal neutron diffraction gives an upper limit for the spatial
dimensionality which is an odd integer less than or of the order
of five.

We hope the gedanken experiment performed here may,

in practice, be carried out in the near future.
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6. Concluding remarks.

In this paper we have discussed the validity of
applying the "stahility postulate" to the problem of spatial
dimensions. It was shown that this kind of approach naturally
favours a priori n=3. An alternative approach is proposed
where, basically, it is suggested that one must first
demonstrate that the wultimate law used to derive spatial
dimensionality is valid in a generic f?n, rather than simply
postulating the validity of the same equation for an arbitrary
ﬂ{t From this approach one finds that the constraints obtained
on the spatial dimensions are not only weaker (upper limits)
than those obtained by using stability arguments, but have also
a different nature, which we consider more appropriate to this
problem. The main advantage of our methodology is that it is
able to bypass an essential difficulty inherent to the probiem
of the number of spatial dimensions, namely: n=3 i=s never
questioned a priori when a physical law is established. Clearly
it is not our scope to deduce the number of dimensions of space
from a purely conceptual law {51, but provide a constructive
scheme to get at it. As stated in the Introduction, we believe
that the structure of physical saspace -~ in particular its
dimensionality —— is a function of our conceptual scheme but it
does not seem possible to deduce the spatial dimensionality from
it. In the last analysis, one should resort to phenomenology to
determine it.

In this paper, the fundamental equations generalized to
R“were the Schraedinger equation and the Einstein energy—mass
relation. The validity of the de Broglie relation for any ﬁZ"

properly supports the initial generalization of the Schroedinger
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equation (Section 4) and, at the same time, gives a
justification for it, in general not found in other cases. Then,
using this result, we have suggested the phencaenon of thermal
neutron diffraction by crystals as a means to determine the
number of spatial dimensions. As a consequence, we have found an
upper limit for n, which is an odd integer (by assumption) less
than or of the order of five. We consider the gedarnken
experiment performed in Section % an experimentum <crucis for
the problem of spatial dimensions and hope it may, in practice,
be carried out in the near future.

lLet us now make some comments about the nature of the
different approaches, concerning the physical problem of spatial
dimensions, quoted in this paper. We can divide them into itwo
distinct clases. The first one corresponds to topological
arguments: to this class belong Whitrow's bio~topological
argument [71 and Poincare's argument, based on the aralysis
situs £3.a,161. The kind of constraints obtained from it is a
lower 1imit for spatial dimensionality, e.g., n;E. In the second
class, we group all other arguments where it is necessary to
introduce a metric space and this seems to restrict the range of
possible values of n. A metric space is introduced whenever we
consider the existence of an interacting system as the
starting-point in the discussion of the problem of spatial

dimensions. It is clear that to begin with an interacting

system, knowledge of the form of the interaction —-— the physical
law describing the phenomenon in a space—time manifold —— is a
necessary condition. This renders the class of "metric

arguments" more “complete" a priori, in the sense that it
containe more information than the class of "purely topological

arguments". The difference can be considered as the cause of the
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difference between the two types (or classes) of constraints for
n. There is, however, an exteption to this general picture that
should be emphasized: the Maxwell electromagnetic theory. We
would like to point out here its distinguished role in the
physical problem of spatial dimensions. All the attempts to
obtain the space dimensionality which are based upon the
structure of Maxwell 's equations (no matter whether they belong
to the class of metric approaches or not) give n=3.

It is not perhaps out of place to present now some
almost obvious remarks about time (and space) "scale" of the
arguments previously discussed. Ehrenfest’'s stability argument
is valid for distances of the order of the solar system and in a
time scale large enough to make the evolution of life possible
on Earth (as noticed by Nhitruwii). Tangherlini ‘s work about the
stability of H atoms can be invoked here to suggest the validity
of chemistry in the same time scale as a necessary, although
not sufficient, condition —— at least chemical thermodynamics of
irreversible process should be also valid). The presence of
atomic spectra in remote stars may also indicate that space has
had the same dimensionality at cosmic scale. To have such a
cosmic constraint on space dimensionality is very interesting
and we hope to treat this poit in a future communication.

It is also interesting to note that all the arguments
presented up to now that depend on the presence of matter are
essentially metric. This is the case of Ehrenfest-Tangherlini-—
—Whitrow. Topological arguments are basically related to the
idea of a field —- this is the case of Maxwell’'s theory, as
mentioned before, and Wien's law, which involves, essentially,

the equilibrium of radiation.
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fis for most physical arguments used to obtain the
spatial dimensionality it is necessary to introduce a metric
space, our two last critical comments are dedicated toc clarify
some aspects involving it.

Firstly, in ref. [B.,al the author was led to conclude
that the stability postulate, applied to the N.K. problem, fixes
the dimensionality of space and, at the same time, is an
absolute prerequisite for a comparison of relative distances
between bodies to be physically possible. However, taking intao
account the analysis we bhave done and the example we have
proposed in the preceding Sections, we are led to conclude that,
in fact, it is the physical interaction between two bodies, or
two systems, that necessarily leads to the introduction aof a
metric—space in order to be able to obtain the number of spatial
dimensions in these casesi but neither the stability postulate
nor a metric—-space [131 are indeed necessary to €fix the
dimensionality of space.

Secondly, we would like to point out that the necessity
to have a metric—space for most physical arguments concerning
the problem of spatial dimensions, brings whith itself the
notion of distance, traditionally based on the differential

J
homogeneous quadratic form, d52= g gdxrdx g which, in the last

analysis, is an arbitrary choice -- indeed there is no logical
argument for excluding other forms for the line element as dsq '
d56 . d58 y etc. In sapite of this (up to now) logical

impossibility the importance of investigating the nature of the
exponent 2 was emphasized in an early work by Ehrenfest [46.b1.
His conjecture that this 2 could be rel ated to the
dimensionality of space is, however, vyet to be demonstrated.

Nevertheless, so far as the formula for a 1line element in a
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manifold of n dimensions is viewed as arbitrary, some care must
clearly be exercised in advancing Ehrenfest’'s conjecture. If, on
the contrary, this conjecture is shown to be actually true, we
can ask whether it can be related in some way to Fermat‘s last
theorem.

In conclusion, we would like to say that although some
epistemological difficulties concerning the use of "stability
arguments” are bypassed by the methodology proposed in  this
paper, there remains, somehow, a certain incompleteness since a
physical event takes place not only in space, but in
space—time. Thus the praoblem of the number of space dimensions
and that of time dimensions are probably not independent. One can
then ask whether it is possible to propose a more general
methodology which could be able to constrain not only the number
of spatial dimensions but also, simultaneously, time
dimensionality. Are these numbers actually related? Is it
possible to prove time to be one-dimensional by disclosing space
dimensionality and/or vice-versa? It is our conviction that, in
the future, further efforts should be made trying to answer
these questions, whether or not a deeper comprehension on the

proeblem of space dimensionality is to be reached.
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FOOTROTES:

1 - An example of criticism where the three=dimensionality of
space is considered as a contingent feature can be found, for
example, in MACH E. , Die Mechanik in ihrer Entwmicklung
historisch—kritisch dargestellt, Leipzig, 1883 , Italian
transl., La w®meccanica nel suo sviluppo storica-critico,

Torino, Boringhieri 1977, pp. 479-80.

2 - It is shown that spontanepus dimensional reduction in any
Kaluza-Klein theary'; always yields a compactified extra space.
However, without an adiustable cosmological constant, the scale
of the ordinary four—-dimensional space—-time is the same order of
magnitude as that of the compactified space. €f. TOSA Y., Phys.
Rev. D3Q (1984) 339; See also CREMMER E. and SCHERK J., MNucl.
Phys. B108, (1976), #409. Now, for illustrating the present
difficulties on this subject, concerning superstring theory, wé
can quote Ferrara's words: Superstrings are I10-dimensional
theories of one-dimensional extended objects, so their relation
to the physical world is only possible if they undergo a
mechanism of spontaneous cowmpactification from D=10 to D=4
dimensions. The study of spontaneous compactification ot the
fully +¥ledged superstring theory 1Iis a formidable task to
achieve, since it requires the knowledge of the full
second—quantized version of the interacting theory. Cf. FERRARA
5. "Matter Coupling in Supergravity", in Superstrings and
Supergravity — Proceedings of the Twenty—Eighth Scottish Univ.
Summer School in Physics, A.T. DAVIES and D.G. SUTHERLAND eds.,

Oxford, Univ. Printing House, 1985, p.38l1.
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3 - Indeed,this result is based on classical arguments and one
can argue that this is not the only example. In fact, one gets
the same constraint on n when extending Weyl’'s approach to
classical Yang-Mills theory —— YANG C.N. and MILLS R.L., Phys.

Rev. 96, (1954) 191,

4 - What inner peculiarities distinguish the case n=3 among all
others? If God, In creating the world, chose to wmake space
3-dimensional, can a reasonable explanation of this fact be
given by disclosing such peculiarities?, cf. WEYL H., in
Philosophy of Mathematics and Natural Science, revised and
augmented english transl., Princeton, Pinceton Univ. Press,
1949, p. 70. Weyl has shown that electromagnetism plays such a

particular role; cf. ibid. pp. 136-37 and ref. [93.

S — It should be noted that this generalization follows purely
"
from the validity of thermudynamics in EZ s leaving the

explicit formof F{(V/T) open. See also footnote 7.

6 — Here we are identifying the space dimensionality with its

number of translational degreesof freedom.

7 — Assuming time to be one-dimensional (as always assumed in
this work) and “"flowing” in a definite direction. However, the
statement made in the text seems to be no longer true if one
tries to develop a thermndﬂnamical theory in the framework of
general relativity. Cf. STUECKELBERG E.C.B., Helv. Phys. Acta

26, (1933), 4173 STUECKELBERG E.C.G. and WANDERS G., ibid 26,

(1953), 307, We thank Dr. M.0. CALV&D for pointing out +to us

these refs.
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8 - Another recent proposal for measuring the number of
dimensions of space—-time, which leads to a fractional dimension,
can be found ing ZEILINGER A. and SVODZIL K., Phys. Rev. Lett.
Ef, {1985), 2553. Some consequences of a maodification of
Newtorn ‘s and Coulomb’'s laws, introduced by assuming a non
integer value for the spatial number of dimensions, are examined
iny JARLSKDG C. and YNDURAIN F.Jd., Europhys. Lett. i, (198&)
9l. There, it is inquired how large can the deviations from the
"standard” n=3 value be. Alsc the recent work by GRASI A.,
SIRONI G. and STRINI G., preprint of Phys. Dept. of MHilano
iniv. (to appear in Astr. Space Sci.) 1is aimed at setting
upper limits to such deviations. It should also be mentioned
that in a recent paper of GASPERINI M., preprint No. DFTT 84&/24
aof Phys. Dept. of Torino Univ. (to appear in Phys. Lett. B)

it is shown that the modification of Newtonian potential -
deviation from the 1/r gravitational potential - following from
a deviation of the number of spatial dimensipns from the integer
value of 3, can also be obtained in the usual four—-dimensional
cantext, provided that the 50{(3,1} gauge symmetry of gravity is
broken. Thus this result gives rise to the possibility of
ambiguous interpretations for small deviations of the Newtonian

gravitational law, but does not affect Coulomb’'s law.

? — Further, for the transmission of a wave signal to be free of
distortion it can be shown that n=1 and n=3 are the only

possibilities.

10 - Furthermore Bragg's law has been obtained in an alternative
way, without using matter waves and, therefore, independently of

Huygens ' construction. Indeed, it has been argued by BUSH R.T.,
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in Lett. Nuovo Cimento 44, (1985) 683 and also ibid 34,
(1982) 363; idew EE? (1983) =241, that a direct particle
interpretation based on Heisenberg‘s uncertainty principle can
be given to the interference pattern produced by a regular

grating.

i1 - One may add the following remark to Whitrow’s argument
about this subject L[7.B]). It is not sufficient that the
intensity of solar radiation on Earth’'s surface should not have
fluctuated greatly for still having life on Earth. The fact
that Sun’'s spectra of radiation did not fluctuated very much is

also required.
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