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ABSTRACT

In this note, a simple bosonic Polyakov's string with
fermionic boundaries is proposed for the Makeenko-Migdalcmﬂnur

Q.C.D(SU(~)) equation.

Key-words: Makeenko-Migdal countour Q.C.D equation; Polyakov's

String with fermionic boundaries.
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1 INTRODUCTION

In recent years, Makeenko and Migdal!, have raised
hopes that a string representation for Quantum Chromodynamics
can be made possible by showing that the unrenqrmalized closed
contour average (the Quantum Wilson Loop} in a four-dimensional

Euclidean space-time.
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where C = {xu (6"); 0¢ o' <21} denotes an  arbitrary

x(o)x(271)
closed contour in R".

The Eq. (2) 1s a closed equation for the called "Quan
tum Wilson Loop"” (1) and an important problem consists to in-
vestigate its solutions at least at the formal level.

In this formal framework, A. Migdal? proposed a solu
tion for (2) in terms of a non-linear Fermi String (the String's
Elfin theory). However, the search for others solutions can be
a useful step towards the understanding of the Makeenko-Migdal

equatioh . (2) as well as to all contour formalism.
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Our aim in this note is to propose another formal
string solution for (2} in the framework of Polyakov's Quantum
Geometry and similar in its form to the strings model with fer

micnic boundaries as ih ref. 3,4.

2 THE SOLUTION

Let us start our énalysis by considering an arbitrary
(topologicaly trivial} fixed surface Ic with the . property of
being bounded by the closed contour Cx(o)x(2w)' This surface
may intersect itself as a consegquence of the abowe Cx(o)x(Zﬂ)
contour have self-intersections as is implicit in the right
hand side of Eq. (2}. We consider such surface described by the
parametric equation {xu(a,;): 0 < 0< 21 —= < § < =}, and
with boundary condition xu(U,o) = Cx(o)x(zﬂ). The self inter-
sections of the surface arise at those points where xutc,ﬁ) =
xu(d',;') with (o,7) # (¢',L'). (see Fig. (1)).

Now let us int;oduce a unidimensional fermionic field
{p{o}, 0< o< 2n} which we will denominate as the "Reduced Elfin
Eield"-and which interacts with the surface geometry - through

the action

SE’.(U )? xﬁ(ul ;)—
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where dcuv (xu (o,%}}) are the surface. area tensors.

We consider, then, the contour functicnal

. 24
- — - 1 a
zE’x(E).x(a):l ‘J I (dw(c)),exp.(-ij V(o) 35 w(c))
o< o

oL2%

(3. 9 (& exp (-s[Blo); x,(0,2)] ) (4)

A similar string ansatz without the fermionic uni-~
dimensional field Y (o} was considered by Olesen and Petersen
in Ref. 5. The formal proof that Eq. (4} for & = 0, G = 27 sat
isfies the same contour equation (2} can be implemented as fol
lows.

The Mandelstam -path Derivative is easily calculated
following Ref.5 - Eg. (3). We remark that this result. holds

true including the case of self-intersecting coutours. So:

é
%o (x)

weTet | Ly _(a)Zsz(o)x(Zw)]
a a

27
L T (dy (o)) exp (-%{ Vi) 2= ¥(o) Ju blodu(2n)
__,05_2“

N LI AN ) - = ¥ (539 (3) y
(-JLOI doj az.é (xu(a) —xu(o,i:)) y(oiylo ) (5}
0

Since the "Reduced Elfin Field" path measure has the

propagation factorization property: we can re-write (5} in the

"splitted" form:
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Now we note that the surface } splits into
C
(x(o)x(27m))
two branches zc __and EC _ _ as despicted in Fig. 1,
x(0)x(d) (x(0) ,x(27))
so we get the result,

S
b}
50,“\, (xu:

W[? ]
- x(0)x(2m)
xu xu(c)

) 2m e (4) _
= - Y - Yy o _
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0' = .
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Evaluating the az'derivative as in the Appendix of Ref.

5, Eq. (A.l} we obtain that the proposed contour functional Eq.
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(4}, :satisfies the Makeenko-Migdal contour equation

5% § .
u 8oy, (x,) . (E)ZE:x(o)x(Z'n')]
1

= (12 (4) =\ _ . (= pe
= (lo} { ) (xLI (o} x11 (o)} ’dxv(U}ZE:x(o)x(B'):"
cx(o)x(Zﬂ)

y ZE:x(&'.)x(zn) (@

If we observe that the points xu(a} and xu(E} . coin-
cides in the space-time we see that the functional (4) satis-

fies the same Makeenko-Migdal (Q.C.D} contour esquation.

N =
c

Up to now we dealt with an arbitrary, but fixed sur-
face } - And since the contour C (0)x(2q) Can be the

x(0) x(2m) xloixizem

boundary of a set of infinite surfaces, we have to sum over
all such surfaces in order to obtain a quantum geometric solu
tion. The natural formalism to implement this task is to use
Polyakovls Quantum Geometry with boundaries®’?. S0, we are lead

to consider the. Quantum Geometric Functional

WE:"(°)*(2“’:I =-Jd“l}ﬁx(o)x(zﬂ)]'ZE:"“’"(Z-‘)] ®

where the proper functional measure 4 [Ic ] to imple
' x(0)x(2m)

ment the surface continu_ous sum is given in Ref. 6,7 and the
covariant expression for the area tensor is given by t (x (3,8)}) =
——--]-'-—- (o, ;:}a X {o,T} ‘Bbxv (0,8} and, consequently, the

/g (o, Cf

covariant version of Eq. (3} is now given by
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Here we have used the fact that only the self-intersecting sur

face points x (¢,f} = x (0',2'} Of the surface ], ef~
v " x(0)x(2m)
fectively contributes due to the delta function in Eg. (3} and

by making use of the relation ship tu\,(xu(c,-cn.tw(xu(o',i;*'}} =1
for xu(c,;} = xu(a',ﬁ'} we then get the covariant result Eg. (10}

It is instructive point out the self-supressing stringl
surface interaction (see Ref., 8).

We emphasize that we do not know wheter this solution
coincides with Migdal's Elfin Solution, since the :femﬁ.onic degree
in ﬁ|:Cx(o)x(_2_")J is defined only at the contour and nét  all
over the surface as is in the above cited Migdal String,

This last Blfin property suggests another more in-

teresting Ansatz for (Q.C.D}N string. We at first,.consider

= = 00

the Makeenko-Migdal equation continued for each closed contour

E‘X(O)x(Z'ﬂ') Cx(o)x'(z-n') (see Fig- 2} and

then; consider the surface continued covariant solution (4}.

lying at the surface }

r

%‘ C = pl" (o’ C\J Qd w(o ) ‘p(z.n. ;\.
_x(o)x(2m) ] Wylo,gi]. 4 ¢L) . , 0

2T +oo i
exp -J dcrj dc[i iy (YﬁDH}lP] (o,%)
) .

-o
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21 4o 2y 4o
exp{—%- A;l dcj. dc.l do'J ag! ﬂJ(U,C}.\/g(a,C} .

=i {1]
6""(xu(o..z: ENCIRITRTEIA IS g(a',t')} (11}

Here wu.(cr,z;'} = (wl (0,7} ,wz (0,2} being a two-dimensional
Majorana Spinor describing  the string fermionic degrees of
freedom, YuDu the covariant Dirac operator and the functional
measure DDP(U,Z,"}:I is obtained as the functional element of
volumd associated to the following functional Riemann metric
|18wi[? = IZ“dofwdC /g(0, %} &¢(o,8).8¢y(¢,2;(2). Proceeding

as above w& consider the guantum geometric  solution

- _ . ny _
WE:x(o)x(Z'rr)] - Idu.[zcx(o)x(mr)] 2 [CX(O)JE(ZTI')] (12}

To sumarize we have obtained a interacting bosonic
string with fermionic boundary with a self supressing delta
surface interaction at these pointé where the string surface
crosses itself as another formal string Ansatz for Quantum
Chromodynamics at N, =+ = (see (9)).

In addition, we have considered a generalized contour
meaning for the Makeenko-Migdal equation which can lead to a
fermionic string (see Eg. 2} similar to the Migdal's Elfin
Theory?.

In would like to:thank Edson P. Silva for enlightening
discussions about the anstaz Eg. (5} and Professor J. Mignaco,
Professor C. Bellini and Professor J. Giambiagi for some .opm-

ments. This work was partially supported by CNPg-Brasil.
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Zcxlalx(Z'n:)

l‘cx((-‘.I); x(211)

ZC:t(O) x (&)
FIG.1

Fig. 1 - The surface J, and its branches ], and
x(0)x(21) x{0)x(0)
Xx(a)x(z'n) associateds to the splitted contour

Cx(o)x(a) and Cx(c?)x(z'n)' respectively at the double contour

point - xu(a} = xu(a}.

el

Cx(0) x(21)

Cy (0) x (27C)

F16.2

Fig. 2 - A closed contour c lying at the surface

x(o)x(2m)

Cx(o)x(2m)
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