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ABSTRACT

Within a real-space renormalisation-group (RG) scheme, we
study the criticality of the ferromagnetic Z(4) model on anisotropic
square lattice. We use a RG cluster which has already proved to be very
efficient for the Potts model on the same lattice. The establishment of
the RG recurrence relations is greatly simplified through the break-
collapse method. The phase diagram (exhibiting ferromagnetic, paramagne-
tic and nematic-like phases) recovers all the available exact results,
and is believed to be a high precision one everywhere. If the model is
alternatively thought as being associated with a particular hierarchical

jattice rather than with the square one, then it is exact everywhere.

Key-words @ 7(4) model ; phase diagram ; renormalisation group ;

anisotropic square lattice.
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I - INTRODUCTION

The Z(N) model unifies in a single framework a large amount of
theoretically and experimentally important statistical models (e.g.,
bond percolation, random resistor networks, spin 1/2 Ising, N-state
Potts, clock, and classical XY models) which are recovered as particular
cases. It has attracted, during last years, a certain amount of effort
(Wu and Wang 1976 ; Elitzur et al. 1979, Savit 1980 ; Cardy 1980 ;
Alcaraz and Koberle. 1980, 1981 ; Rujan et al.. 1981 ; Alcaraz and
Tsallis 1982 ; Baltar et al,. 1984 ; Mariz et al.. 1985), mainly
addressing the square lattice, whose study is simplified because of
self-duality. The Z(N) model coincides with the N-state Potts model up

to N = 3, and starts being more general (more than one coupling constant)

at N = 4, which is the case presently addressed (two coupling constants).
The phase diagram of the Z(4) ferromagnet in square lattice is known to
present three phases, namely the paramagnetic (P ; Z(4) symmetry), the
nematic-1like or intermediate (I ; 2(2) symmetry) and the farromagnetic
(F ; completely broken symmetry) ones. The full phase diagram is consti-
tuted by second or higher order phase transitions. For the isotropic
square lattice, the P-F critical line is completely determined by self-
duality arguments ; furthermore, duality strictly relates the analyti-
cally still unknown I-F and I-P lines (although a numerically quite
precise determination has been recently undertaken by Mariz et al. 1985).
The P-F, I-F and I-P lines join at a multicritical point, which precisely
is the 4-state Potts ferromagnet critical point.

For the anisotroplc square lattice (not necessarily equivalent X
and Y crystalline axes, each one of which carries two coupling constants)

the situation is as follows. The P-F critical frontier {(critical volume

in a 4-dimensional parameter space) is invariant under duality but its
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points are not in general self-dual, and therefore duality arguments

are not sufficient for establishing its analytical expression. The I-F
and I-P eritical volumes still transform, through duality, one into the
other. The P-F, I-F and I-P critical volumes join at a multicritical
aurface, onc line of which corresponds to the anisotropic square lattice
4-gtate Potts ferromagnetic critical line.

The criticality of the Z(4) ferromagnet on the isotropic square
lattice ' has been recently studied (Mariz et al, 1985) within a real
space renormalisation-group (RG) formalism based on the well known
gself-dual Wheatstone bridge cluster ; that treatment recovers all the
available exact results for the corresponding phase diagram, and is on
the whole quite satisfactory. Along similar lines, we discuss, in the
present paper, the criticality corresponding to the anisotropic square
lattice i to do g0 we use a different self-dual cluster, particularly
well adapted to this more general situation, and which has already
proved its efficiency for the Potts model (Oliveira and Tsallis, 1982).

In Section 2, we introduce the model and the RG formalism, in

Section 3 we present the main results, and we finally conclude in Section 4.

IT - MODEL AND RG FORMALISM

A convenient form for the Z(4) (symmetric Ashkin-Teller model)
ferromagnet (dimensionless) Hamiltonian is the following one (Alcaraz

and Tsallis 1982) :

—_— z [K’I‘—K’;(Uic -l-TT)-ZKxO’UTT]

T 3 13 2717313
“s <1,3>
y ¥ y '
+ I [ Ky - l(l(oicxj + rirj) - 2K ciojri'rj ] (1)

43>
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where T is the temperature, <1,j>x and <1,j>y run over all the

pairs of first-neighbouring (respectively along the x and y axes) sites

on a square lattice, g, = + 1, 1, = ¢+ 1 (¥ 1), K!l(;’o, K{?O,

i i
K’I + 21(}2‘ 2 0 and K{ + 2K§ # 0 (the dimensionless coupling constants K's

are related to the corresponding dimensional ones through K = JIkBT).

Let us also introduce the operationally convenient variables (vector

transmissivity, Alcaraz and Tsallis 1982), £% = (1, tT, 9 3) and
= (1, ty ty ty) through
-4KI
1 -
t}' =t = = (y =xy) (2.a)
-2(kY + 2Ky -4k Y
1 2 1
1 + 2e + e
and -2 + 2K -4K]
t; = ) 2e. - - + e . (y =x,7) (2.b)
1 + 2e_2(K1 + 2K2) + e-AKl

Thir vector tronsmissivity generalizes the sealar one used by Teallis
and Levy 1981 for the Potts model. Hamiltonian (1) contains several
interesting particular cases, namely the 4-state Potts model
(KI = ZKg, hence t{ = tY) as well as three versions of the gpin 1/2
Ising model (Ising 1 : KY = 0, hence tY (tY) ; Ising 2 : K} =0,
hence tI =0 3 Ising 3 : K; = » , hence t; = 1},

Let us now establish relationships we shall be needing later on.
Consider a series (parallel) array of two bonds with transmissivities

-E(l) an +(2)

d t : the equivalent transmissivity 3(9) (g(p)) is given by

(Alcaraz and Tsallis 1982 ; Mariz et al. 1985)

(8 ., (1), (@

r r r

t (r =1,2) (series) (3)
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and
R G N R R 0 &
t, = (parallel) (4.a)

e 2e{De® 4 (D D

(1) (2) (1 (2)
t +t + 2t t
(p) _ 2 2 1 1 (parallel) (4.b)
1+ 2t§1) tiz) + tgl) tgz)

Equations (4) can be conveniently re-written as follows :

P _ (D (2D

N e (r=1,2) (5

. -+
where the dual tramsmissivity tD is defined by :

1 -t
ty = 2 (6.2)
1+ 2t1 + t2
and
1] =2ty + L
D _ 1 Y e,
ty 273 e, + €, (6.b)

We can now go back to the anisotropic square lattice. To

X ty

construet the RG recurrence relations (in the (tT, t2, 1

tg) space,

for instance),we follow along the lines of the Potts model treatment of
Oliveira and Tsallis 1982, and renmormalise the cluster (two-rooted graph)
indicated in Fig. 1(b) into the single bond indicated in Fig. 1(a). To
be more explicit, we construct the present RG in such a way to preserve
the two-body correlation functions (such a procedure is very efficient
even for gquantum systems : see for instance Caride et al. 1983), 1i.e.
(along the x-axis) :

'Hz 2_3123456

e = Tr
3,4,5,6

(N
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where the renormalised (dimensionless) Hamiltoniam*?iz is given
(excepted forran additive constant) by

L4

%' x! ' b4
J‘P12=K1 - K G, *1yry) - Kyo0,1 11, (8)

and the cluster (dimensionless) Hamiltonian‘¥+123456 is given by

3"‘?123{,56 = 5K = Kj(0,0 + T Tg + 0,0, + T,T, *+ 050, + 141,
+ 0,04 + T,T5 + 0,0, + T,T,)
- 2K,(0,0cT,Ts + 0,0,T T, + 030,137,
+ 0y03T,Ty + 0y0,T,Tg)
+ 6K¥ - K¥(°1°4 T, t 0305+ TaTg 0,0, * T,T
+ 0,04 + T,T3)

_ oY
2K2(01041114 + 0505T4Te + 0,0,T, T, + 02031213) (9)

We Immediately see that the graph indicated in Fig. 1(b) is equivalent

to that indicated in Fig. 1(c) where g(s) (p)

and t are regpectively given
by Eq. (3) and Eqs. (4) with g(l) = &% and 3(2) = t7. The next step is

1
now to calculate the transmissivity (identified with tx } of the graph

indicated in Fig. 1(c). We perform this through the break-collapse method

(BCM), introduced by Tsallis and Levy 1981, for the Potts model, and

recently extended by Mariz et al. 1985 to the Z(4) model (see Tsallis

L]
1985 for a review). The transmissivity gf is given by

v NCT, fF g e )
eF = 1 i i ; 3 (10.2)
nd D (tl, t 3 tl, tz)
X X LY LY
N, (7, ", & £ ti)
t;l -2 1r 27 1 2 (10.b)
X X
D (t], ty 5 t], t3)
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where N,, N2 and D are to be determined, To do this we shall operate
on Lhe central bond of ¥ig., 1(c) (In Tact, we could choose any other

bond as well), and obtain the broken (tT = t; = 0}, the collapsed

(tT = é; = 1} and the pre-collapsed (tT = 0, t; = 1) graphs, respectively
indicated in Figs. 2(a)-(c). Let us note +bb = (t1 R t ) = (N /Dbb Nbb/D ),
TeC = %%y = (xSS/pC  §CC¢/pSC +be bc b -

= (t1 s £,0) = (N°/0°C, WI°/D°%) and B = (¢)°, ¢ ? = (N1 /o°c, N2 ©/p°%)

the transmissivities respectively associated with the graphs of Fig. 2,

The quantitieg Nl, N, and D we are looking for are given (BCM ; Mariz et al.,

2
1985) by
X. .. bb X. cC x X, ,.be
Nr (1 - t:z)Nr + tINr + (t2 - tl)Nr (r = 1,2) (11)
and
D= (1 - tHD™ 4 % 4 (o - D™ (12)

consequently the knowledge of N:b, Dbb, ) Dcc’ N:c and Dbc enables

the calculation of Nr and D.

The transmissivities Ebb and t°° are easily calculated (by
using the series and parallel algorithms expressed in Eqs. (3) and (4))
as the respective graphs (Figs. 2(a) and 2(b)) are reducible iIn series
and parallel operations. The transmissivity Ebc is more complex, and
has to be further reduced through the BCM (recursive use of the algorithm
expressed in Eqs. (11) and (12)). All graphs reducible in series and
parallel operations are straightforwardly calculated. Only one graph
resists until the very last step, and this graph exclusively contains

(0,1) bonds : the transmissivity of such a graph satisfies itself

t, = 0 and t, = 1. The problem is thus completely solved. We obtain



' CBPF-NF-050/85

N TS 5 e) ) = 2e (B P)y 2t§3)t£p)t§s)t§p)

+ [(tgs))2 + (tfp))21t¥ +2(t§832 t] tgp)
2206 PN % ¢ £$40 ({2 P 2 P 2 () 7 %
+2(t§s)+ tgp))tfs) cip) th (13)
N (e}, 6557, e3) = 2:53) t;p) + 2t{s))2 (tfl’))2
+ [(igs))z + (tgp))2 Jey + 2(t§5))2 (tgp))2 ts
+ 4(t§3)+ tép)) tis)tip)tf (1)

and

X

D(tl,

and

t

X
94

e, = 14e{) 2P 20ae

(s) (p) .x
+ 4t1 tl tl

1

(s)

)2(t§P))2+4t§s)t{p)t

(8) (p) (s) (p),x (8),2,,(p),2 x
€yt 2t, t2P t, + 206,77 ey

x
1

(15)

Summarising, the RG recursive relations are as follows :

X X R y ¥
tx'- Nl(t19t2 3 tla tz)
! D(ty,t, 5 t], t)
xt_ Npltpety 5 £1,e))
t -
2 (e],ty 3 t7,8))
¥
b A ¥ .y, X X
ty fl(tl’ £ 5 t], b))
v . Y LY, X X
134 fz(tl, ty 5 £, tz)

1

£,(t

b4

1ty b ) £))

(16)

(17

(18)

(19)
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where in the last two Eqs. we have taken into account the xz*y
invariance of the square lattice. This set of four Eqs. completely
determines the flow in the (tT, t;’ tﬁ, tg) space, and through it
the phase diagram as well as the universality classes cf our system.

In order to express the results Iin moré familiar variables,

it is convenient to introduce the following definitions :

T = kBrxgﬁ = IIKT (20)

*]
{1l

VX o oY
J1/3% Kllﬁi (21)

¥ ¥y ¥y ¥
Jl + 2J2 K7 + 2K

_ 1
Q.= = {22)
2 X X
J? + 232 Kl + 2K
X X X
Lt 23§ Ky + 2K,
B = = = = (23)
1 K
y N y
7Wae23d ¥+ x
gz L > 2.1 - 2 (24)
N K

where we remark that the following relationship holds : az/al = pY/8".

Qur phase diagram can be also conveniently expressed in the (t, O Bx, )
space. Finally let us also introduce a convenient variable (Alcaraz and
Tsallis 1982) through the following defipition :

n(l + 2t1 + tz)

Notice an interesting property, namely

&P(t,, t,) = a(t], t9) = 1 - s(ty, ty) (26)
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111 - RESULTS

The RG flow exhibits three trivial (fully stable) fixed points,
namely (t?, tz, t{, tg) = (0,0,0,0) (characterising the P phase), (1,1,1,1)
(characterising the F phase) and (0,1,0,1) (characterising the T phase}.
The P-F critical 3 dimensional volume (in the 4~dimensional parameter

space) is preserved through duality (and consequently through our RG

which is constructed on a self-dual cluster), i.e.,if (t?, tg, t{, tg)
belongs to this volume, then (tTD, t;D, t{n, tzn) given by
1 -t
D _ 2
e — an
1+ 2t1 + t2
X X
<D _ 1 - 2t1 tt,
f2 = X L X (28)
1+2t] + 6
1 - ¢d
D
t{ = - 2 5 (29)
1+ 21:1 + oty
- 9y ¥
gD _ 1 2t1 +ty
ty = (30)
1+ Zt{ + :g

also belongs to it. However, excepting special cases, the points of
this eritical volume are not self-dual, i.e.,in general

X
(Eps 2o 1* 8255

arguments are not 'sufficient for establishing the .analytical expression

D
X t{, tg) $ txD tyD, tyD). Due to this fact, duality

of the P-F eritical volume. Two regions of this volume are constituted

by self-dual points. These regilons are :

i) the "anisotropic" self-dual surface, determined by

® .D
€] = t{ (31.a)

and

X = 7P (31.b)
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which imply & + 87 = 1 with &" = s(tT, t;) and s’ = s(t{, tg) where
we have used definition (25). This surface contains the anisotropic
x

Potts ferromagnet critical line for ty -_t§ and t{ = tg, as well as the

anisotropic Ising 1 ferromagnet critical line for t§ = (t’;)2 and

2
tg = (t{) (both critical lines are exactly recovered within the present

RG) .

(i1) the "isotropic" self-dual surface, determined by

b4 X

t, 1 - 2tl {32.a)
and

¥y 2 _ y

t, 1 2t1 (32.b)

or equivalently by

s =35 =1/2 (33)

On the intersection between the isotropic and anisotropic self-
dual surfaces lays the already known P-F critical line of the Z2(4)
ferromagnet in isotropic square lattice (t? = t{ and t; = tg ; see for
instance Mariz et al. 1985). The whole situation is depicted in Fig. 3.
A point which belongs to the P-F critical volume but does not lay on
any of the self-dual surfaces is transformed, through duality
(Egs. (27)-(30)), on another point which also belongs to the P-F critical
volume and which is located on the "other side" with respect to the
anisotropic self~dual surface as well as with respect to the isotrople
self-dual surface (such operation transforms (s*, &¥) into (1-¢*, l-sy)}.

The P-F critical volume bifurcates at a multieritical surface,

into two critical volumes, namely the I-P and I-F ones. These two volumes

are transformed into each other through duality (Eqs. (27)-(30)) and,
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excepting for the Ising limits and special parts of the bifurcation
multicritical surface, do not contain regions constituted by self-dual
points. Thelr analytical description is therefore far from trivial,
The analytical expression of the multicritical surface itself
is unknown ; nevertheless it is easy to verify that the anisotropic
Potts ferromagnet critical line (ti =t = tYD = tgn) belongs to it.

2 1
The RG flow within the critical volumes is as follows

(1) almost all points of the P-F critical volume are attracted by the
d = 2 isotropic Ising ! fixed point (tT - t{ = ¢{§—= tz = Y7 - 1), and
therefore belong to the corresponding universality class (the present
treatment yields for the correlation length critical exponent the
value vIsing = fn 3/fn (29/13) = 1,369, to be compared with the exact

value Uizi;; = 1 ; we recall that the present RG linear scale factor b
equals 3 (shortest distance between roots of the graph ; see Melrose
1983(a,b))); this result is exact for the hierarchical lattice defined
by the recursive graph transformation indicated in Figs. 1 (a,b) (and
the corresponding one for the y- axis), but is incorrect for the Bravails
square lattice, which is known (Kohmoto et al. 1981) to be associated,
for the isotrople case, with a continuously varying set of universality

classes (this discrepancy could possibly disappear in the limit of

increasingly large RG clusters).

(11) almost all points of the 1-P and I-F critical volumes are respec-
tively attracted by the d = 2 isotropic Ising 2 and Ising 3 fixed points
(respectively at tT = t{ = 0 and tg = t; = J/2-1, and at tg = tg = 1 and
tT = t{ = /7-1), and therefore belong to the d = 2 Ising univergality

class, as expected from symmetry arguments.
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(iii) almost all points of the bifurcation multicritical surface flow

towards the d = 2 isotropic 4-state Potts fixed points

(tT = tg = t{ tg = 1/3), and therefore belong to the corresponding

i

universality class (we obtain v = %n 3/2n(2193/857) =~ 1,169, to be

compared with the exact value (den Nijs 1979), usziiz

Potts
= 2/3 for the

Bravais square lattice).

(iv) all points of the P-F, I-P and I-F critical volumes yet uncovered
by points (i)-(iii) either correspond to one or the other d=1 fixed points
[(t?,cg,t{,n§)=(1,1,o,o),(0,0,1,1),(0,1,0,0),(o,o,o,l),(l,l,o,z),(0,1,1,1)]
and therefore belong to the standard N~state Potts one-dimensional universa-
lity class (we obtain v1D=v:EECt =1), or correspond to new unstable fixed
points at the boundary of the physical region(real coupling constants),e.g.,
(tT,t;,t{,t§)=(1/2,0,0,1),(0,1,1}2,0).

The previous statements concerning the RG flow are illustrated
on Fig. 4 for a few interesting invariant subspaces. Typical cuts of the
full phase diagram are represented in Fig. 5 in the (71, Oy s Bx, By)

variables.

IV - CONCLUSION

The criticality of the Z(4) ferromagnet in anisotropic square
lattice has been studied within a real-space renormalisation-group {(RG)
which preserves two-body correlation functions. To construct the RG
recursive relations we have adopted a cluster (two-rooted graph) which
has already proved its efficiency for the N-state Potts ferromagnet in
the same Bravais lattice, and which presents several interesting fea-
tures : (i) it is self-dual and reproduces consequently all the available
exact results concerning the still unknown critical frontier assoclated

with the square lattice, self-dual itself ; (ii) it presents a peculiar
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x- and y- bond topological structure which, in the high anisotropy limit,
exactly recovers the linear chain, therefore exhibiting d = 1+ d = 2
crossovers which are consistent with the symmetry-based expectations ;
(i1i1) it generatee a hierarchical lattice whose fractal dimensionality

d: equals 2 (d. = %n (aggregation number)/fn b = 2n 9/&n 3 = 2),

f

coincident with that of the Bravails lattice which jt is intended to approach.
In spite of the relative complexity of the cluster (6 spins and

9 bonds) and of the model (4 states per spin and 4 coupling constants)

which yield to &6 = 4096 different configurations, it has been possible,

through the use of the break-collapse method which greatly simplifies

the analytical operational task, to establish by hand the RG explicit

recursive relations with little effort. This set of equations enables

the quick numerical calculationof an arbitrary point of the phase

diagram (3 critical volumes éeparating the paramagnetic, Intermediate

nematic-like, and ferromagnetic phases in a 4—dimensional parameter

space) as well as the qualitative discugsion of the main special features

(role played by the duality transformatioen, etc.). All these results

are either known to be exact (e.g., the critical lines of the anisotropic

Ising and Potts ferromagnet as well as the para~ferro critical line of

the isotropic Z(4) model), or believed (by us) to be so (e.g., Egqs. (32)),

or high precision ones everywhere for the anisotropic square lattice.

The modél being classical (in the sense that all relevant observables

commutate) and no proliferation of the coupling constants taking place,
the whole phase diagram (as well as the critical exponents, which exhibit
non neglectable discrepancies with those corresponding to the Bravais square
lattice) 1is exact for the hierarchical lattice generated by the recursive
graph transformation.

We are deeply indebted to A.M. Mariz for very valuable discus-
sions. One of us (CT) acknowledges warm hospitality received at the
Centre de Recherches sur les Tr&s Basses Tempdratures, with special

thanks to R. Maynard.
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CAPTIONS FOR FIGURES

Fig. 1 : Two-rooted graphs associated with the x-axis RG recursive

Fig. 2

Fig. 3

Fig. 4

relations (the y-axis ones are completely analogous),obtained

by renormalising cluster {b) into cluster (a) { and
respectively represent the x- and y-bonds of the square lattice ;
the arrows indicate the "entrances" and "exits" of the

clusters ; @and O respectively denote internal and terminal
sites). Graph (c) is equivalent to graph {b) with....and amvanr
respectively representing series and parallel arrays of the x-
and y-bonds.

Two-rooted graphs obtained by breaking (tT = th =0 : graph (a)),

2

collapsing (tT - t; = 1 ; graph (b)) and pre-collapsing

(tT = ] - t: = (0 3 graph {(c)) the t*-bond of graph of Fig.1(c).

AWM represents a pre-collapsed bond.

Cuts of the "isotropic" and "anisotropic" self-dual surfaces with
the t;D = 0 volume in the 4-dimensional (t?, tz, t{D, tgn)
space (or, equivalently, the (t?, t;, t{, tg) space) . The
"igotropic" ("anisotropic") surface is determined by

ty + ZtT = tg + 2:{ =1 (tf = t{D and t; = th)' and is so
called because it satisfies s = sl = 1/2 (sx + 8 = 1),

B and I1 respectively indicate the Potts and Ising 1 eritical
points, which lay on the isotropic Z(4) self-dual line (to
which belongs its P-F critical line).

RG¢ flow in the main. invariant subspaces :

(a) isotropic Z(4) model (P, I;, I, and 1, respectively denote
the Potts, Ising 1, Ising 2 and Ising 3 critical points 3 the

dashed area is unphysical) ; (b) anisotropic 4-state Potts model
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{c) anisotropic Ising 1 model. P, F and I respectively indicate
the paramagnetic, ferromagnetic and intermediate (nematic-

like) phases ; @ and W respectively represent unstable

and fully stable fixed points, Fig. (d) can

indistinctively represent the flow in Fig. (b) (by

respectively choosing s(tT, t?) and s(t?, t{) as abcissa and
ordinate), as well as that in Fig. (c¢) (by respectively choosing
s(t?, (t?)z) and s(t{, (t{)z) as abcissa and ordinate) ; it

can also represent the flow associated with the Ising 2 model

(by respectively choosing 2s(0, tz) and 2s(0, tg) as abcissa

? t{ = 0), as well as that of the Ising 3

model (by respectively choosing 2s(0, t?) and 2s(0, t{) as

and ordinate ; t

abeissa and ordinate : t; = t; = 1), (b){ec) and (d) : the (1,0)
and (0,1) fixed points are the d = 1 ones,

Typical cuts of the anisotropic Z(4) ferromagnet phase diagram.,

T 2 kBT/J¥ 1s the reduced temperature ; @, B* and B are

defined in the text. The ferromagnetic (F), intermediate (I)

and paramagnetic (P) phases respectively appear at low, interme-
diate and high temperatures.The I phase always disappears for

Bx and By low enough. Bx = By = ] and 2 respectively recover the
anisotropic Ising 1 (Il) and 4~-state Potts (33 critical lines.

In the limit of high Bx and/or By, the I-P and I-F phase boundary
asymptotically and respectively yileld the anisotropic Ising 2 (12)
and Ising 3 (13) critical lines. The o, = By/Bx = ] case corresponds

to the isotropic Z{4) ferromagnet.(a) a; = 1, (b) ay = 0.2,

(c) g* = g7, (@) g* = 2.
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