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ABSTRACT

All perfect fluigd spatially homogenecus and isotropic
cosmological models (without cosmological constant) are solved
in géneral and unified form when an equation of state p = (y-1}p
is assumed. The explicit dependence of cosmological time on the
metrical scale factor is determined for any values of y and
spatial curvature parameter £ . A set of four infinite numerable
sequences for values of Y, all of them consistent with the
energy conditions and each starting from one of the values 0,1/3,
1; 4/3, includes all cases having solutions described by
elementary functions. A generation technique yields the cons-
truction of all solutions in each sequence. By the use of the
conformal time coordinate, the differential equation for the
scale factor may be set in the form of that describing the
classical motion of a particle subject to a linear force . Closed
models are analogous to harmonic oscillators and their "half
periods" are determined as an explicit function of vy, both for

the conformal and cosmological times.

Key-words: 'Relativistic cosmology; FRW models; Perfect fluid.
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1 INTRODUCTION

The system of Einstein's field equations for spatially
homogenecus and isotropic cosmological models demands, to be
solved, a choice for the values of two parameters. They may

formally be taken as continuous and their origin is twofold:

a) The spatial curvature parameter e, which may be
positive, null or negative, completely characterizes the admissible
homogeneous and isotropic geometries described by the Robertson-

(1,2]

~Walker line element.

b) The energy momentum tensor taken is in the form of
that of a perfect fluid, described by its energy density p and
isotropic pressure p. The problem is then reduced to the solution
of a couple of field equations expressing p, p and the scale
factor as functions of the cosmological time. its integration
only occurs under additional assumptions.In a large number of
known solutions the linear equation of state p = (y-1)p is
adopted. Such linear relation reduces the system of field
equations to a single non-linear second order differential
equation for the scale factor.

The behavior of its solutions strongly depends on the

(3,13]

pair (e,y) as the chronology of known solutions iliustrates:

Einstein's[3] static solution (+1,2/3); De3Sitter's[4] stationary

[5,7]

solution (0,0); Priedmann's evolutionary dust models (*1,1);

etc.. Qualitative analysis of admissible models (taking into

{10}

account the cosmological term) were done by Robettson and

Harrison{111. Useful compendia of solutions are presented in

Harrison{11] and Vajk[12]. Neglecting cosmological constant and
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making use of the conformal form of the metric, both of them
determine parametric solution for arbitrary v and € = t1. How-

ever,the cosmological time is left as unsolved integrals[11'12'14].

A quite distinct approach is that of Tauber[13]

» who makes use of
the manifestly conformally flat form of the metric to construct
solﬁtions.

The specialized literature and textbocks on the

subject[15]

present the homogeneous and isotropic cosmologies by
means of a representative set of particular solutions, i.e., those
obtained when one a priori gives specific values for € and v .

It should be noticed the lack of an explicit solution including
arbitrary values of bbth the.parameteré.

This work determines the general and unified solution for
perfect fluld homogeneous and iscotropic cosmologies with a linear
equation of state: the non-linear differential equation fﬁr the
scale factor a(t} is transformed into a hypergeometric equation
describing the cosmological time t(a). The curvature parameter e
and the index y appear in the general solution for t(a) as conti-
nuous parameters. Therefore, all known solutions are specializations
of the general solution through adequate choice of values for ¢
and y. Negative values of pressure are needed to obtain those
models originally developed with the aid of the cosmological term
in the field equations. This is contradictory with the phenomeno-
logical prescription 1 § vy § 2. However, it is consistent with
the comprehensive thecoretical considerations that take the energy
conditions as requirements to be fulfilled by physical fluids[16}.

Nevertheless, the general scolution presented is valid whatever

the supposed interval admissible to vy.
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The next section is dedicated to the direct integration
of the field equations for arbitrary € and vy, which gives rise to
a restricted solution. Section 3 exhibits the transformation of
the nonlinear differential equation for the scale factor a(t)
into a hypergeometric equation describing the inverse problem
t{a) and the determination of all of its solutions. Those expressed
by elementary fuhctions are identified in section 4, which also
describes a mechanism to generate solutions based on a property
~of the hypergeometric functions (complementary applications are
supplied in an appendix)..The complete solution obtained by
making use of the conformal form of the metric is found in

section 5.

2 .. THE RESTRICTED FORM OF THE UNIFIED SOLUTION

Spatially homogeneous and isotropic spacetimes are des-—
cribed by Robertson~Walker's line element, which may be taken in
the following form:

as? = at? - a%(e)1ax? + o2 (x) (a0%4sen20as®)] . (2.1)

The function o(X) is given byl1°/3]

o(x) = SinvEx (2.2)

Ve

where ¢ is a parameter related to the constant curvature of the

spatial sections. If positive, null or negative, ¢ is associated

{17}

with closed, flat or open models , respectively, and it is usual
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to normalize its values to 41, 0 and -1.
However, from the strict poeint of view of the search
for a unified solution, it is desirable to consider ¢ as an arbi-
trarily positive parameter which can be continuously deformed
toward zero and negative values. The unified solution is only
required to be well defined as € moves and normalized values may
be then taken for the sake of simplicity. The physical mechanism
that would give rise to such a change in geometrical properties
of space, if there is any, is another question not considered here.
Einstein's field equations for a perfect fluid with

energy density p and isotropic pressure p are given by

p = 3 (3%e) (2.3.a)
a

L1 b 2 .
p=-22 _{_:1] - fz , | (2.3.b)

where K = 871G and ¢ = 1. A dot is used to indicate derivative
with respect to the cosmological time t measured by a comoving
observer.

Adding the linear equation of state

p = (y=1)p ’ (2.4)

the system of field equations (2.3) is reduced to a single non-

linear second-order differential equation for the scale factor

a({t), given by

(2.5)
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whose first integral is
. a,y 3y-2
(3)2 = [—éﬂ} - ¢ , (2.6)

3y=-2
where cY ] ao

positive. This particular supposed form of the integration cons-

is an integration constant with ag real and

tant bears on some simple facts. It states not only that

CY = a03Y—2 is a specific integration constant for each matter

content in the models, but also that the unified solution requires
that all curves, describing the solutions for any pair (¢,v},
share the point a = a, at some instant of cosmological tiﬁe.
Furthermore, the derivative é(ao) = Y1=€ 1s the same for all ¥y
and indicates the existence of an extremum for closed models.

if

For any real and positive a, there is a maximum at a = a,

Y > 2/3, a minimum if v < 2/3 and a stationary point if y

[l

2/3
[ c£. (2.5}]. Finally, the weak energy condition is fulfilled,

since

a.y3y
g = "3-2' [‘ag'] > 0 . (2.7)
ao .

The integration of (2.6) is achieved with the intro-
duction of an auxiliary variable defined by

uﬁ[_@_

3y=-2
ao] ) (2.8)

Notice that the new variable is meaningless if & = 0
and/oxr y = 2/3. However, the corresponding solutions to these
values of parameters are limiting cases of the general solutions

and their detailed discussion is postponed until section 4., It
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should be remembered that a similar question arose in connection
with eq. (2.2): the auxiliary Gﬁriable Ye x was meanihgless for
€ = 0. However,X = 1lim o{(X) is a well defined function obtained
as € moves. €0

With the aid of transformation (2.8) the first integral

(2.6) is written

Ce
|

- s ¢ Mo (2.9)

where

A = %[3%}5] , (2.10)

and it is readily integrable to furnish

u

= ['g'%:l] ao E-'.A Jum-1) (1—11)—1/2 du 1 (24.11)

Y9

t""to

which takes the form of an incomplete beta function through the

choice u(to) =u, = 0. Such a function is related to Gauss

(18]

hypergeometric function and eq. (2.11) is expressed as:

2A-1

t-t,. = [“ﬁ\"]ac e~A B F(%,A;Aﬂ;u) , (2.12)

0

which converges absolutely for |u| £1 and it is not defined if
A =1-n, vy = %[%E%E],n =.1,2,3.... It is named the restricted
form of the unified solution[19], since it excludes an infinite
family of soluﬁions as a consequence of a specific choice of in-
tegration limits in the definite integral (2.11). Notice that the

De Sitter's universes do not fulfill the initial condition adopted,
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being the first solutions excluded in the above seguence.

3 THE GENERAL FORM OF THE UNIFIED SOLUTION

A procedure in which the initial conditions remain ar-
bitrary is demanded in order to get solutions for all y . This is
achieved when one considers the inverse problem, i.e., the so-
lutions for a differential equation expressing the cosmological
time as a function of the auxiliary variable u.

Inversion is made through (2.9}. it provides the

first derivative of t(u),

g, [352:1] ag e R a1 (_g=V2 (3.1)

whereas the second derivative may be put in the form

2

d"t 3 dt
u({l-u) ;2 + [(1—A) - ['f'AJ“:lE =0 , -(_3.2)

which is a hypergeometric equation having a = 0, b = %4-A and

{18,20]

c = 1-A as parameters . If ¢ is non integral the hyper-

geometric equation has the two linearly independent solutions

“_C}F(a—c41,b—c+1;2-c;u). Bowever, the two so-

Fla,b;c;u) and u
lutions become identical if ¢ = 1, and if ¢ # 1 is any other
integer, one of them becomes meaningless. In any of these cases
the logarithmic solutions of the hypergeometric equation provide
the other linearly independent solution.

Therefore;'tha general solution of (3.2) is given

by (¢cf. ref. [20]):
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-G
t(u) = 0g + B u? F(Z,A A+1;u) (1-A # n) (3.3.a)
1
... I - oo N - =
Zl=v v ; Z}v v
t(U.) = 7 -l- § [ -[—‘—rj— u + z u
(n) (n) -y val YR,
n§1
where n = 1,2,3..., =0 if n = 1,and a,,8., © and §,_,
Ve 0’"o {n) (n)

are constants.
Actually only one initial condition is arbitrary: the

constants g and c( represanting shifts in the origin of the

n)
time scale. The constants Bo and G(h) are not arbitrary and are
determined on the condition that (3.1) is the derivative of
the solutions for t(u). Therefore:

-a) Taking the derivative . of (3.3.a} (cf. refs.

[21] and [22]) one gets
_ [2a-1 ~A
B = Lﬁﬁtﬂ 2y € . (3.4.a)

b} Usiﬁg the relations

1) | |
[n T 2} av = g2V [(n—1)!]2 [2(ntv=-1)1]!
ny, [2(n=1)! [(ntve1)]°

obtained with the aid of Legendre's duplication formula for gamma
[23]

functions , and =~
1 (2k) ! k -1/2
Fis,b;b;u) = u = (1-u}
2! kzo 22K (k1) 2 '

where the summation indices are related by v = k-n+1, one gets
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from the derivative of (3.3.h):

2{n-1)1{{1-2n n-=1
(n) * i_]'I[;ﬁ‘-ﬁ‘] % ¢ - (3.4.0)

[(n-1)1)

§

The analytic continuations of (3.3.a,b) are obtained

as follows (cf. ref. [20]):

a) Eq. (3.2) is transformed into a hypergeometric diffe
rential equation with parameters a =0, b = %-—A and ¢ = 1/2,
if the substitution u' = 1-u is made. It follows that (3.2) has

the soclution:
; 1/2 1. 3,
t(u) = 01"'31(1-“) F[1""‘A; "2": 'i; 1"] (3-5)

where.q,1 is an arbitrary constant and

~A

0 € . (3.6)

B1 =z (1-2A) a

b) The substitution u' o 1/u transforms (3.2) into a

-

hypergeometric equation with parameters a = 0, b = A and ¢ = A

It follows that (3.2) has the solution:

t(u) = ay+B, ulon1)/2 F(%' 1=28, 3-28, %] (h g ned)
(3.7.a)

]

n n + —

g 3 21~v 1y,=v
Bl =g,y + é(n)[:" v§1 vin+l @
O S ) v oo

+ u§1 E—ﬁn—.‘—%]—: ('&) + 1ln (%)] (A =n + %) ,



CBPF-NF~050/86

~10=-

where n = 1,2,3,..., o, and E(n) are arbitrary constants and
By E(n) are determined analogbusly to (3.4.a,b).

Clearly the use of one of the solutions (3.3.a,b), (3.5)
or (3.7.a,b), with a suitable adjustment of constants, is a matter
of convenience: each one of them i1s a representation for the
integral (2.11) up to an arbitrary additive constant, because
their derivatives coincide.

All models may share a common time scale through an
adequate choice for constants. A simple choice is t(0) = 0, but
it is inconvenient for models with ¢ > 0 and y < 2/3, for which
a, is a minimum. However, since ao }s a universal value for the
scale factor in the unified approaéL, the time scale may be
defined as t(aj) = ty- By this way, ty may be suitably defined
for each ¢ and vy so as to recover the solutions presented in
literature.

One should notice that the solution (3.5) has no res-
trictions upon the values of y , whereas (3.3.a,b) and (3.7.a,b)
have distinct forms according to the value of y considered, and
so it will be named the general form of the unified solution.

Making the choice t(ao) =t (3.5) may be written:

0!
-2 a 1/2
t-ty = _‘_"Q'K {E-e[-g-]3"’“2:l F[1-A, %: %: 1-6[9—] 3*"2]
(3y=2)¢ .. 9 a0
~0-0V2 plia, i §i 1-e] } : (3.8)

Notice, by the way, that the solutions strongly depend
upon the values of the parameter A, whose behavior is shown in
fig. 1. The continuity of A in each of its branches suggests

that solutions characterized by slightly different values of ¥y
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may be continuously ' deformed into one another. Notice, however,

that A diverges at y = 2/3 (the’index Y for Einstein universe).

Figure 1

4 - ELEMENTARY SOLUTIONS AND GENERATING TECHNIQUE

This section describes all the cases where the general
and unified solution is reducible to elementary functions: not’
only those obtained by limiting processes (such as ¢ + 0 or
Y + 2/3) but also all those for which the general and unified
solution coincides with the power series expansion of some ele-
mentary function.

Consider the study of flat solutions, taken as assymp-
';totic limits of the general solution when € - 0. One has the

following expression, readily obtained from (3.8) :

) t-t 2/3Y
a(t) = a, [1 . 321 [ ao"]] ) (4.1)

Making the choice t0 ='2a0/3Y one recovers the res-

tricted form of flat solutions presented in the specialized

[11,14]

literature . However, additional information is provided

(24]

by (4.1) : it has the exponential function as limit

when v + 0, and therefore alsc includes De Sitter's flat
solution[zsl.

It should be noticed that € and y are independent para-
meters and two successive limiting processes commute. For instance,

take vy = 0 (A = 0) in (3.8) (cf. ref. [26]), to get after some

manipulation:
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-12=- -

+1

a a2 ra amam&{éj €
l:(z;) +\/ (E_) -E:] ] 0 a
1

_ ~0 a
t—to = ao in aoln[-é;] £ =0 . (4.2)
+V1-¢ L ao[arcshm{g—o] -arcsinhil £ =1
. [4,6,10}
which unifies solutions of De Sitter type . It 1s also

illustrative of the requirements, made by the unified approach ,

of a common origin for the time scale, as pictured in fig. 2.

Figure 2

Reduction of the general unified solution (for e # 0)
to elementary functions is found with the aid of the integral

(2.11). It is expressed by elementary functions only in the

fellowing cases[27]:
Y(S) i[1~n ]
= 3T-2
Y n p=0,:1,%2,...
®) 4[ n ns=1,2,3,...
Thn %3 2n-1]
{(4.3)
y P l[1+2n]
_ 1, n 3l n P = 0,:1,42,...
A_p+5-’ n=‘l:2,3,...

where the change in counting number was a matter of convenience.
It is done in order to emphasize that each seguence starts from
the index vy for an established elementary solution: De Sitter,
radiation, dust and vy = 1/3, respectively indicated by a super-
script. Notice that all of them satisfy lim y_ = 2 and therefore

3
(S) (1/3) %

-the solutions for the Yn and Yn sequences are consistent
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with the dominant energy condition (|p[ S p), while those for

the YAR) and YiD) sequences art consistent with the strong energy
condition (p + 3p 2 0). In any case, the weak energy condition

(p 2 0) is taken for granted whatever the value of v [cf.(2.7)].
Solutions corresponding to values of Y apart from those indicated
in (4.3) are given by a power series solution, i.e., a hypergeo-
metric function, which may describe, or not, some special function.

Noticing that any two values of A differ in an integer
number, the cosmological solutions corresponding to any consecutive
values of y in each sequence are represented by two contiguous
hypergeometric functions, i.e., those whose corresponding parameters
differ in a unity. Therefore, a generating technique for solutions
may be devised, since between any two contiguous functions there
exists a linear relation with coefficients which are linear
functions of the argument[18].

A selective criterion is to pick up among the existing
fifteen contiguity relations that one in which: a) the third pa-
rameter is decreased in a unity; b} the first (or second) parame-
ter is increased_(or decreased) in a unity if it Qdecreases
(increases) in a given sequence.

Application to one of the sequences makes the process
self-evident. For the radiation sequence Y(R) = i[—lL—]., A =n,

n 3 |12n-=1
and (3.5) is written:

/2 1.3, .
Elun)) = ag+8, [“’“(n)‘] F[“n' 27 2] “(n)-‘] ' (4.4)
where,u(n) = e[;;]_ - The contiguity relations furnish :

1) f 3 1
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and it follows that:

al) ifn =1, (4.5) is an identity,

b) if n = 2, = F[-1, :

and so on...

Therefore the successive elementary functional forms
for the hypergeometric function in (4.4) are generated through
(4.5), whereas the functional dependence of u(a) changes at each
step. Specializing to get t(0) = 0, the first three solutions
for the radiation sequence are:

1

aln=1, vy = %; P=x0 {(Tolman's radiétion solutionsis])
a 1/2
0 ] al2
b} n = 2, *r=-g-,p=-%p

¢) n=3, vy = %, p = - % 0
T LT

E + 3e[‘§5]2/5] } : (4.8)

Other - sequences of elementary solutions are examined in the

appendix
Finally, consider the case Yy = 2/3. The corresponding

solutions for arbitrary ¢ are obtained from the general solution
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when A *+ =, The simplest way to do it is from the solution

(3.3.a), making use of

lim F(%,A:A+1;u) = (1—8)1/2 .

Arroo

Therefore, it follows from (3.3.a) that:
C pam—— 2

which is readily obtained from direct integration of (2.6). If
€ =21, (4.9) reproduces Einstein's static universe[Bl.

If 0 Se<1, e =0 or € <0, it gives rise to a closed, flat ox
open, ' expansionist solution'[11], respectively. For all these
models a = 0 and the rate of expansion,é = V/1-£ ,depends upon

the value of €, as a consequence of the unified approach.

5 THE CONFORMAL FORM OF THE SOLUTIONS

Differently from flat solutions, for which t(a) is
readly invertible to furnish a(t), one cannot in general invert
the solutions with € # 0.

Some gain in simplicity is achieved when one introduces

the conformal time 1, defined by

dt = a(t)dx ‘ _ {5.1)

through which the metric takes the conformal form

as?za? (1) tac?-ax?-o% (x) (a6%+sin%0as?)1 . (5.2)
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Under the conformal transformation the second-order

differential equation (2.5) is translated to the form

aa" + [é%fila'z + [2%;2] ca® = 0 Y, (5.3)

and its first integral is expressed by

a'l2 3513v-2
@2 2 5.4

where a prime denotes derivative with respect to 1 .

Making the transformationstzg]

]
i

lna, for y =2/3 , and {5.5)

= B2 sas (5.6)

eq. (5.3) is translated to the forms

z" = 0 , for vy = 2/3 , {(5.7)
and
0 , fory+3E . (5.8)

Therefore, if v = 2/3 ,

AT (1=-14)
a‘T) e ao e r

and the integration of (5.1) gives

t(t) - t

. ao (evl—e (T""Th) _ 1]
0 Vi-¢
both standing for the conformal form of the solution' (4.9).

The interesting cases occur when y #£ 2/3 for which,
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(5.3) is transformed into the-equation describing the motion
of a classical unitary mass particle sﬁbject to a 1ineér'force.

If € >0 or € <0 the force is of restoring or repulsive type,
respectively, while the motion of a free particle corresponds to

€ = 0. The general solution of (5.8) is obviously:

z ) .
z v -2 gin /E[Ig%fglt + 6} . {5.9)
/E . .
where the oscillator (anti-oscillator) frequency is given by

(5.10)

3y=-2
w = |_J%"_| ’
and Zge 6 are integration constants.

The first integral (5.4) is translated, by means of the

transformation (5.6), into the energy equation

%(zﬁz + 1 awzzz = 1 2 alY=-2

used to determine z, = ag3Y—2)/2

There is no loss of generality if one chooses § = 0.

Thus the solution for the scale factor a({t) is

_ 2
Sin/313§;2|1_57-2
a(t) = ao_[ < ] ' (5.12)
/e
and (5.1) furnishes the cosmological time t(7t):
2
invEwg) T2
t =y | (#2577 ar 4 constant . (5.13)
/e

The last integral is left unsolved in literature without any

references to the explicit form of its representations[11'12'14},
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However, it is easy to verify that (5.13) is just the integral

(2.11) with the auxiliary variable u defined by:

] = sin“/€ wt . (5.14)

u-e[
%0

Therefore, the solutions of the hypergeometric equation (3.3.a,b),
{(3.5) and (3.7.a,b), are representations for (5.13) merely by
substitution of the relation (5.14). As an example,the conformal
forms of the first three solution in the radiation series

{cf. (4.6), (4.7) and (4.8)] are:

a)n=1, v = %, p = % p (Tolman's radiation solutions

al{rt) =

[sin/E T]
2
YE

49
ti(t) = ra (1-cosvE T) ;

_b)n=2,y=-g-,p=-§-p

[sin/— T/ﬂ

a

g [2 - 3cos/E = 3 + CO8 /_ % ]:

4
c)n=3fY='§fP”—.15p

o 5
alt) = a, [aen € T/S] '

a : :
0(8 T 10 3 T 5 T
ti{t) = :3{3 = 5cosve 4 + = cos” /e E - cos” Ve g] a

The formal analogy between closed models and harmonic

oscillators points to the cyclic character of c¢losed models. In-

81,
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version of "direction" of motion occurs when z = Zg, at the

instant of the conformal time giben by:

L

T 2 ——
13y-2]

=§3’a (Y;é-g-) . (5.15)

It should be noticed that all closed models exhibit a maximum when
described through the auxiliary conformal scale factor z(t). How-
ever, one can define the "half-period" of closed models as the
time needed to jeach the maximum value for the scale factor,
restricting oneself to models with vy > 2/3, for which a maximum
for a({1) actually exists [cf. (5.6)].

Bearing this definition iﬁrmind, the information contained
in (5.15) may be translated back to cosmological time. Noticing
that u(T} = 1, the general solution (3.3.a) provides'for the

"half period", as described in the cosmological time coordinate:

fon_ _
Tmzlz"z’] a, /i —BL (v 2, (5.16)
I'(A'i—'i')
where I' stands for the gamma functionlao].

An exact formula to calculate the life time of closed
models is provided by eg. (5.16), whose plot is showh in Fig. 3.
When the strong energy condition (p+3p 2 0) replaces the more
restrictive condition of positivity of pressure and energy, the
life time of the models may increase indefinitely in the range

of negative pressures[31].

Figure 3

Another interesting feature is that T decreases with

increasing vy, i.e., the life time of closed models diminishes when
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the effective gravitational mass increases, as one should expect.
A simple interpreﬁation is évailable with the use of eq. (5.8).
Suppose a set of spring — mass systems, with different spring
constants, equally elongated of'zo. The spring constant

k = [éx;g]2 increases with the increasing of the relation p/p,

2
shortening the time needed to complete a half-cycle of motion.

6 CONCLUSIONS AND FINAL REMARKS

This work exhibits the ggneral and unified solution to
perfect fluid homogeneous and isotropic ceosmological models in
which the fluid obeys the equation of state p = {(y-1)p. The
evolution of all models is described by the solutions of a hyper-
geometric equation. Considering e and y as continuous parameters,
all information about the underlying geometry and matter content
is conveyed into the general soiution. This enables the comparison
of the evolution of models constructed by the use of two slightly
different values of v , since the general solution furnishes the
second solution as a neighbor curve whose séparation from the
first may be determined with accuracy.

The solutions correspond to power series expansions of
elementary function when the values of Yy are described by a set
of four infinite numerable sequences. All these solutions are
consistent with the energy conditions and recurrence relations
among contiguous hypergeometric functions provide the generating
mechanism to display all solutions in eéch seguence. Apart

from these sequences, the solutions are described by hypergeometric
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functions, i.e., power series solutions (representing or not some
other special function). ’ |

The power series feature makes the solutions useful
for the analysis of the behavior near singularity. Considering

the first two terms in solution (3.3.a) one has for y > 2/3 :

C 230 E_]Bylz - cA a_ 3y=2
T 3y ag 2 (A+1) ag '

where the origin of time scale was choosen on the condition_
t{0) = 0. It should be noticed that the information carried by
the first order term in the general solution is lost, when one
approaches the singularity, by the fise of the first integral
eq. (2.6), as it is usually done[15c'16].

It should be remarked that one may give to analytical
expressions for observational parameters of astrophysical interest
the same unified treatment in the sense here presented.

By the use of conformal time the evolution of the models
may be set in the form analogous to that of a classical particle
submitted to a linear force. The behavior of perfect fluid homo-
geneous and isctropic cosmcologies for any values of the index vy
is analogous to that of a global oscillator if ¢ = +1, an anti-
oscillator if ¢ = =1 and a free particle if £ = 0,

The scale factor for all models with y > 2/3 exhibits
a maximum, and the time to reach maximum radius decreases mono-
tonically with increasing Y. Qualitative features of c¢losed models

behavior remain without change if the upper bound y § 2, determined

by local thermodynamic considerations, is surpassed.
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APPENDIX

This appendix applies the generating mechanism devised

(D) (s) (1/3)

n and Y

in section (4) to the sequences Yn

(D) _ 1142
|

1
n nn] ;A= n-'l"f; n=1'2'3'vuo

I)

From solution (3.3.a) one has:

It follows that

a) if n = 1 one has[asl

-~

=1 /-—--—
13,5, 3 Sin " (1) 1/2

Bl AR
b) if n = 2
157, _ 5 1 _3___, 1/2
F[‘z"ifi'“(z)].' “"“"4u(2, E’{z “tz)] “"“(2)’ :I

Determining @y on the condition t(0) = 0, the first

two solutions in this sequence are described by
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al n=1,7v =1, p=0 (Friedmann's dust models[5'7'9])

1/2'
% [sin/_'(a/a i ( 11/2{ i 9_1112] (A.3)
. ao ao ' ! M

whose conformal form is

a a
a(t) = —é’— sin2 ﬁgl = 2—2 (1-cosve 1) ,
{(A.4)
2a
£(1) = ___E_g [1 sing? T] :

b) n =2, vy «5/6, p=-

=
©

o+
]
mwlﬁl

1/4
3 51p7%ta/ag 4 5[1.]1/4 [g__]‘llz _3._]
2 ao‘ +

el | E a.5)

given in the conformal form by

. a
alt) =-:—q sin4-—fil'-[ R
a
: “o {31 5 Vet 1 YET 3 /E'T]
t{t) = [ —-——sin-———-n-—-sinTcos - |-
g2 8 4v€ 2 Ve

S 4
m v, 3[1—.—23] + A= 1-n, n = 1,2,3,...

From solution (3.5) one has

172_( 1.3,
t =o +&|(1-u(n)) ["*'2"?'1'“(11)] ’ (A.7)
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ao 2/ (2n-1) 34
where “(n) = e(?;). . The contiguity relations furnish[ ]
logo - B. 2 p— - lbg.o .1_ n-1
(1-n)F[n,2,2,1 u(n)] (2 n]F[n 1,2,2,1-u(n)]--2 UWiny *
(A.8)

and it follows that

a) if n = 1, the above relation is an identity,
b} if n = 2,0ne hasIzs]
1.3 R Teri-ua)
F 2,—2-,531—11(2} = 3|5 + 1n.
2 gy -,

The first two solutions are

a) n=1, Yy =0, p=-p; the unified De Sitter's solutions

given by (4.2} ;

5

b)n=2,Y=4/9.p=—-§p
3 1+ ¥/1-e(a0/a)2/3'
t-tO =3 ao € 1ln - :
1= Vicetay /a2
+ [E-]Z’-" Viceta,/ 1273 - e ] . (A.9)
ag 0'a

III) Y(1/3) 3[22-1] r A =_;--n' n = 1(2;3,...

From (3.5) one has

1/2

Fl3+n,31as -u(n)] . B0y
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a
where u(n) = s[zg]1fn. The contiguity relations provide[34]
_ % n
1 1 1.3, 11,3, 1 -
[i"n]FE'z""n"i:f""u(n)] = (1-n)F[n—:—.2,-2,1-u(n)] -3 u(n’ ’
(A.11)

and it follows that:

a) if n = 1,the above relation reduces to an identity ;

b) if n

5 1.3, _ 2 ~1/2 .1 =3/2

f

On the conditicon t(ao) 0, the first two soiutions are

t = 2a0l:V-a-—- sy :l ; (A.12)

b) n=2,Y=9,p=-10

rlr
I

8 _ 2. 1/212m 2 374 a2 174
3 aO{[:1-'€(E_) ]. 'E(EE) + £ (EE) ]

- /ENG ) } . (A.13)
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CAPTIONS FOR FIGURES

Fig. 3:

Graphic representation of A(y) = % (3%:3] .

Graphic representation of De Sitter's solutions when
t(ao) = ty = 0. The dotted line shows the open solution
when the time scale is required to satisfy t(0) = 0,

as it is usually done in literature.

Graphic representation of the life time 2Tm(Y).
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FIG.3
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