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ABSTRACT

The simple supersymmetric Wess-Zumino model is extended to
arbitrary d=4v dimensions. The components of the - quiral super-
field are found to obey a higher order Klein-Gordon-type eguation,

whose Green functions are discussed.
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1 INTRODUCTION

In general, when extending field theory to higher dimensions,
the kinetic part of the evolution equation is kept as the wusual
second order Klein-Gordon equation. However this procedure.is not
unique. Other prescriptions are possible, in particular one which
emerges naturally with the use of the supersymmetry élgebra. In
reference [l] this alternative was rised, but soon abandoned in
favour of the common one..Instead, we will adopt here the alter-
native (called I in Ref. [1l])} which corresponds to higher order
equation in higher dimensiocns.

There are some good reason for this kind of extension, espe
cially when generalizing dimensional regularizatidn to supersym-—
metric theories. Not adopting this procedure might lead to impor

tant simplifications (2] but alsco to some inconsistencies[3].

2 THE CHIRAL MODEL
It is with those ideas in mind that we shall take the simple
Wess-Zumino modellql in higher dimensions. To avoid unnecessary
technicalities we shall take the number of dimensions d as:
d = 4v (1)

The number of components w, of a Weyl—spinor[5] is

w =2 =2 (2)
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The generators of simple supersymmetry obey the usual comuta-
tion relations. To these generators there correspond w Grassman
variables 6% and their o conjugate Qa. Just as in four . dimensions
we can define superfields and represent the generators as deriva
tive operators acting on them. Also, we can define the usual co-

variant derivatives[sl, Da and 5&, leading to the definition of

"chiral fields" as the solutions of-

D&@ = 0 (3)
From which we obtain:
i . Gxdt
6°5 a,.;
o =er  %%gx,0) (4)
where
1 .*1 O
¢, = %—-9 "Te Ty (=) (5)
© g=p B! L PN

The wa o (s=0,1...w) are the w+l components of the quiral
1°°""'s
superfield. They are antisymmetric, and we write, for s=0 and s=w:

P(x) = A(X) (6)
Y (x) = € F(x) (7)
Gyeenlly Ayeeely
where € o 18 the w-dimensional Levi-Civita symbol,
1'.' m

3 THE LAGRANGIAN

As in four dimensions the variation of the highest component under a

supersymmetry transformation is a divergence, So, the lagrangian
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for a chiral superfield can be written in the usual way

£= E(IJI + € @-2, + h.c. + interaction terms - {8)
D F

As the mass dimension of JQ is d ([m]=l,[ag]=d), from the

first term in (8} we deduce:

(8} = 5%;2 (9)
And, from the second one
el = 3 (10)
So we write
w
c = %-mz (11)

Now we use (4) and (5) to write (8) explicitly in component

form. As a first step we write

- - . O=0 -1 ., 0=0 3
=3 ¢| +®1€%“a-¢| - & = (18287 )28 ] +...
£ o -0 D 0 oo 0 D 02 (4o D
u W

e +% m? q:;] + % mZ $:| + interaction (12)

F F
Note that
a o Qoerel

0 1...8 w = 1 w 8 (13)

with
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8 © =9 ..8". (14)

Then, the explicit separation of the "D" and "F" terms, gives

. - L
(l - ae G a L]
1

8 w 17t %y .
D=1 = = - ¥ s i3

* * . I T L +
‘8=0 g1 {w=8)! et I Os41%s41 RN et e
w
2 w a ..-a
S m 1 . 1 w
+ ] ———— e 7 v, +h.c.)+int,
2 620 s!(w-8)! Opoeal O el
(15)
4 EQUATIONS OF MOTION
From {15) we deduce for the free case:
Eal...aw % |
ia * --ow +m ‘p._ s =0 (s=0;l ...,m)
st %151 MY %1% ’ (16)
In particular, for s=0 and s=w, eq.(l6) gives:
w @
0%a +wlF*r =0 (17)
w
2 _
F+m“a* =0 (18}
respectively. Where we have used (6}, (7}, and
Gl---a ( ) . tzn'
£ 13 » ...13 + =Det(id *)e: .22 =07 e .
ajo, @, LRGN Gy oeally (19)

Now, to find the equations of motion proceed in the following
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- -
Q. eal
'1 W

way: first multiply (16) by HT———T—— i3 . Then take the

Jia, .
81 1 Bsus
adjoint of (16) eliminate the barred component, and finally use (19)

to find, for any s:

)

(0?2 -n%) ¢

I
=]

= (20)
alt.las
Only for d=4 (w=2) does (20) coincide with the Klein-Gordon e-
guation.
In general, expression (20) means that the free propagators
1

should contain the factor: (p=(pz)7)'

P = m (21)

5 THE GAUGE FIELD

The real gauge superfield V can be treated in an analogous

way. In d=4 and for the abelian case we have (See referencele])
2z
L. Byp Sp v (22)
o B
D
Where, as in (13) and (l4) we use the notation:.
a o
B=p'..p%=x¢ pl...p? (23)
m! allilam

A natural supersymmetric generalization of (22} is [7]:

o ...aw )
£V = E VDG ...Da 5Da otnDa- V (24)

1 w W w D
—2‘ '2-1'1
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oo [8]
Now, using the identity 1
w
a ...a w 8 w
e 1w A——-Da ...0, BD_  ...0_ = 0z (25
g=( s!{w=-8}! 1 8 s+1 %y

and choosing the gauge in which
© w w
we arrive at:

w
D.g = vnfv (27}
M D

Which means that the free equation of motion for the abelian gauge

superfield V, is:

N E

O“v=0 (28)
Leading to the propagator:

(29}

6 THE GREEN FUNCTIONS

We then see that our straightforward procedure gives, in a
natural way, a generalization of the Klein-Gordon equation to
higher dimensions which is of order w in the space-time deriva-

tives. So, it seems appropriate and convenient to gain some con-
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fidence with equations (20) and (28), the respective propagators
(21) and (29), their Green functions, etc.
The fundamental solution of (28) is easily found by taking

the Fourier transform of (29), giving[gl:

fdymy 2V '
F(p,) = 2 I (2v-2) RO-4Y (30)
° iT () 2
Where
d-1
R* = § xf-x} (31)
i=1

The behaviour of (30) as a function of R depends on the num

ber of dimensions through the exponent
o = w-4v = 2 -4y = 2 -d (32)

o is negative for d=4 (v=1). It is zero for v=2, and it is posi-
tive for any other integer value of v greater than 2.

When taking the finite part of (30) for v>1 (note the pole

[10]

in T' (- %) ), we get on additional £nR factor ; SO we have

v=1l , d=4 G~ X {33)
RZ

v=2 , d=8 G~ EnR (34)

v>2 , d=4v G ~» R*R (a»0)  (35)

For v > 1 the Green function has a confining form; it grows with

R.
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In the massive case, we can write the propagator (21) as a

series of massless ones:

1 E m, wl
= = (<) (36)
p -m m” 2=1 P

Taking now the Fourier transform of (36) (cf. eq.(30)), and
eliminating the pole part of each term, we arrive at the expres-
sion:

£
mR, ¢
(am)2Y =)

w_4v

ol ol .
: (22n ™R LSy —pEEs1-2v)}
im®r*Y =1 r(i‘;ﬁ)r(%u-zu) z 2 2

F(P) =

(37)

To check that (37) is the Green function of (20}, we .apply
the operator []%. The first term (£=1) is the fundamental solu-

y [10]

tion of (28 , 8o that the result of operating with [J is

just a d-function. For the rest of the series we use:

m+a+2}r(w+qj4v)

[i}] ]
7 73+ Lr7 2 a AR
o°r =2 = O+2, o ,O+4Y R (38)
r &2 (214

and the equation obtainéd by taking the derivative of (38) with
respect to a. In this way we can show that (37) is indeed the fun
damental solution of (20).

In four dimensions (v=1l,w=2), the first term of (37) should
be separated and written as if %3&;?—:21. Eq. (37) gives then the

usual Green function for the Klein-Gordon equation.
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