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ABSTRACT

We formulate the A¢“-0(N) - field theory in random path space.
By making use of this random path formulation we offer a probabi
listic-topological argument for the triviality phenomena of the

quoted theory for D> 4,
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In the last years the analysis of the infinite's remormalization
in guantum field thebries have received a renewed attention due
mainly to Aizeman®, Fréhlich? and Aragdo et al.® rigorous work
on the triviality phenomena of the (apparent non-renormalizable)
A0*-0(N)-field theory for a space-time with dimensionality greater
than four. All these studies are based in a common idea: the lat
tice version of the Symanzik's path reformulation for the model®.

Qur aim in this brief report is to present a path formulation
of A¢"~0(N) (symmetric phase) suitable for the analysis of the
triviality phenomena, In addition we make some remarks onthe N+0
"polymer limit"*®’®%.

Let us start our study by considering the (bare) generating func-
tional of the Green's functions of the 0(N) (symmetric phase) A¢*

field theory in a D-dimensional Euclidean space-time

N A N
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where ¢2(x)} denotes a N-component real scalar 0(N) field,-(uo,lo)
the (bare) mass and coupling parameters .and the Gaussian  func<

tional measure in (1) is
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Now, in order to get an effective expression for the functional
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integrand in (2), where we can evaluate the ¢% functional integra

tions, we write the interaction A¢$“ term in the following form

lo D N a - D 3
exp{ Y Id x( ] (67 x)H% = Jdu[ol.e:q:{—ijd x 0(x) (] %)%}
a=1 a=1

(3)

where o{x) is an auxiliary scalar field and the ¢ functional meas

ure in (3) is given by

dulo] = ( T Ddc(x)exp{-l{dnx 2 52(x)} (4)
xCR 2 A
O
with covariance
- Ao (D)
<0(x1)0(x2)>CT = Jdu[cﬂo(xl)otxz) = —2-°- $ ("1“‘"2’ (5)

" The last result allows us to consider the §(x) field as a random
gaussian potential with noise's strenght 2; 7

After substitution of (4) into (2), we can evaluate explicitly
the @—functibnal integrétions since they are of gaussian type.

We, thus, get the result

Z[Ja(x)] = Idu[c]Det—le(—a+u;+210)

exp{% JdedDy J?(x)(—A+u§—21q)6abJB(y)} (6)

At this point of our study we implement the main idea: by fol-
lowing Symanzik's analysis", we express the o—functionals inte-
grands in (6) as functionals defined on the Feynman-Kac-Wiener

space of Random paths by making use of the well known random path
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representation for the non-relativistic propagator of a particle
of mass My in the presence of the external random gaussian poten

tial o(x):’

y OO

(-mu;-zia)“(x,y) = |dr G(x,y,0)(Z) (7)
‘0

togDet(-&+u;—210) = - %f]d x G(x,x,0) (L) (8)
‘0

where the non-relativistic propagator is given by

. {.D o (T oy
ild"z o(z)j(w (z)) :
Gix,y,0) (T) = Jdu[wi;';’ J xy (9)

] e

with the Feymman-Kac-Wiener path measure

c _
antw®) « (navialexpt-2 {7 (@ -3 w2 (10)
O<a<y 2
w(0)=x_ °
w(0)=y
and the (random) world-line currénts defined by
w ) (z) = ("6 (2w ® (a)) as (11)
Xy - Xy '
)
So, we obtain the proposed reformulation of X4¢"“0(N)- theo

ry as a theory of random paths {wig)(a)} in the presence of a

random gaussian potential

zZ[J%(x)] = '[du[cr] -exp{g J d;C Jd x[du IW(C)]
46

EﬂqJ(ierDZ G(Z)J(w(c)) (z)}exp{:L Jd dey Z g, (x) [I;;fdu[w(c)]

a-1
exp(i!dnz 0(z)j(w(c) Y (z) )18, - Ty (Y)} (12)
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We shall use the random path formulation (12) to analyse the
correlation functions of the Ag"' theory. As a useful remark, we
note by using (12) that the general k-point (bare) correlation func-

tion possesses the general structure

<d., (x )...qbi (xk)>® =

1,° 1 Kk
0 if k=2j+1
) <b, (%, )8, (%, )>,...<b, (x e, (x, )>
@ity 1 178 07T Ty Ty I by 0
-pairings if k=2j (13)

where the gquantum averages < >, in (13) are defined by the ¢
partition functional Z[0] (see eq.(l) with J% (x)=0).
Because of this result, we have solely to study the properties

of the 2-point corrxelatien function

_ © D < 0, (T)
<¢i1 (x1)<1>i2 (xy)>4 = Gili;Fc du [wxlle .e:-cp{in z 0(2}.] (lexz) {z)}
' )

expf %J % :Jﬁnxldu [Wg)] . eXp {-iJ.dDz a(z)3 (wif{) (z)] > (14)

0
Let us evaluate the o-functional averages < >, in eq.(14) (see
eqg. (4) and eqg.(5)). For this task we expand the “close path term”
in powers of N. Explicitly
o0
{
k k[ ag,

<. ()¢, (y)>=68. . § ,N D
1y t2 i, 1 (T J — (a7,

k=0 £=1 o CZ _
(. 0 r’ J © ¥ [ D @y
d - d - - d L ]
| u[wxlle o; d;_x[wxy ] <exp{i£=1 zZp clzt) J(szx.&) (zz)

. 1[&": o(z)3(wis)) (23> (15)
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and since the c-average in eq.(15) is 'of the gaussian type we can

perform it exactly. The result reads:
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4
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The above expression is the two-point correlation function of
the A¢*-0(N)- theory expressed as a system ©f interacting
random paths with a repulsive self-interaction at these points where
they crosses themselves. It is instructive to point out that (16)
is -related to.the continucus version of the Aizenmanrf{daujcedxna
-point correlation function.

Now we can offer a topological explanation for the theory tri
viality phenomenon for D>4. At first, we note that the correla-
‘tion-function (17) will differ from the free one, namely

oo

{
<d., (x) &. (y)~> = &8, . (|dzdulw,
11 12 FREE 1112

¥ (17)

o
if the path intersections implyed by the delta functions in (16)
are non-empty sets in the RD space-time. We intend to argument
that these intersection sets are empty for space-time with dimen

sionality greater than four. At first we recall some well-known
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concepts of topologysz the topological Hausdorff dimension of a
set A embedded in RD is 4 (with d being a real number) if the mi-
nimum number of D-dimensional spheres of radius y needed to cover

d

it, grows like y = when r+0. The rule for (generical) intersections

for sets A and B (both are embeddeds in RD) is given by
4(a0@) = d(A) +4(B) =D (18)

where a negative Hausdorff dimension means no (generical) inter-
section or egquivalently the set AlB is empty.

As is well know the Hausdorff dimension of the random paths in
(16) is 2. %’°% A direct application of the rule (18) gives us that
the intersection sets in (16) possesses a Hausdorff dimension 4-D.
So, for D>4 these sets are empty and leading to the triviality
phenomenon (see eq.(l?)).

Next, we consider the "Polymer" limit N»0.3’°’® As the number
of field components ‘is displayed as a parameter in the model s
correlation functions, we -can take straightforwardly the -above

limit. For instance:

<d. (x)9. (y)>éN+o)
1 2 L (T
A . £ (D), (D) (L) ;s
o (z) ‘—z[da[ldu 8 (ny (G)-ny {a _)
= {dg du[wxy le o do (19)
o

We note that the (19) is nothing more than the .probability -of
a polymer {wi;)(a)} of lenght o starting at the point x Hitts
the point y with the self-suppressing Edward interaction®’®,

Finally we make some comments on the analyses of the divergen-

cies in the random path expression (16) for D<4. As a first ob-
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' servation we note that all the path integrals involved in (16) can
be exactly evaluated by making a power series in A0.5’1°'The re-
sulting p;oper—times ¢ integrals will in general be divergents. By
using a regularization (such as a cut off for small proper-times)
one can show that the divergencies can be absorbed by a renormali
zation of the bare mass By and the action path term in (16) (or
equivalently, a wave=function and Ao—coupling renormalization in
the field formulation eq.(l)}, closer to the renormalization "po-
lymer” procedure exposed in °,

The author is grateful to Professor C.G. Bollini, Professor J.
J. Giambiagi, Professor A. Mignaco for coments and Doctor José M.
Machado to point out to the author the "Thao physics" which is
based the proposed geometrical formulation of the above (particle)

Ap*~field theory.
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