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ABSTRACT

We aim in this letter to point out a fermionic string theory
which is formally equivalent (on the lattice) to the three dimen-

sional ising gauge model (3D -~ I.M).
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1. INTRODUCTION

It is known that the partition functional of the three
dimensional ising gauge model (3D -~ I.M.) can be expressed in the

form ({1])

-

/ = (chp)Ni%\ exp (= A(S) Log ﬁ"./’ ) CT)[CN(S)]

BIFAOVEIDNES Rl ctan -

(S)

where the summation :gi is carried out over the closed two dimen-

sional surfaces S on a three dimensional regular lattice,ﬂ'-‘ J/uT

L

denotes the ratio of the 3D - I.M. coupling constant and the
temperature, N 1is the number of the plaquettes of the lattice,
A(S) is the area of the lattice surface §. The presence of the
functlonal @ [C(.S)-l tthe sum over the lines of self- 1ntersect10n
C(S) of the surface § weighted with sign factor (-—1)1(6“” is
introduced to ensure the necessary cancellation of self-intersect
surface in eq.(l). Here, .?(6(33) denotes the total lenght of
these selfintersection lines.

The explicity dependence of eq.{(1l) on the area of the
surface S leads to the hope that near its critical poeint, a
(fermionic) string representation should be possible ([1], [2]).

Our propose in this letter is to present a bosonic string
theory, which upon being fermionised posseses formally on the

lattice the 3D ~ I.M. partition functional eq.(1).
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2. THE STRING THEORY

The simplest model of fluctuating closed surfaces in the
d
continuum Fz is given by the Polyakov’s Closed Bosonic String

Theory with partition functional ( i=4,..,4 )

/= mls,, x4 exp(-;“ﬁofﬂ,b,x‘]

(2)

where

S, [, %7= ) (5B 90 o x ) odd
),

(3)

denotes the covariant Brink - Di Vecchia - Howe string action and
i

*/A[ﬁkb ,X ] the covariant functional measure proposed by A.M.

Polyakov ([3]}.

d

(1 + €q.(2) should leads to a theory of closed lattice surfaces

It is expected that by using a lattice regularization of

with statistical weight depending only on the area of these

surfaces.
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(Latrice) A A(S)
Z - Z e Toawat
(s

‘Proceeding by analogy, it is a natural idea to consider the
3D -~ I.M. partition functional as defining either a new sort of
quantum string theory. However, this quantum string should
possesses a more rich structure than the Pg}yakgy’s string due to
the additional-presence of the functional QP [C:(Sﬂ in its formal
lattice definition eq.(1).

Our basic point to define this 3D - I.M. string is to
consider as another string’s degrees of freedom (besides the
usual ones { X‘['ﬂ,%ﬁh{‘n'hthe orthonormal triple of vector {ek“);l{;i,?&’
determining the tangent plane and the normal line at a point z-x;ctji
of the string world sheet. _

P | P%

Since these vectors are orthonormal (g‘b[l)— eo,m.ebng )
and ppssessing a 80(3) invariance, they can be considered as the
componen’ts of a S0(3) § -field 57'(1) < ekl!’)./\k‘l' 0-9 with 1/\,‘&
denoting the normalized generators of the 50(3) lie algebra, A
dynamics can be given naturally by the associated covariant 80(3)

O -action with a Wess - Zumino functional IH (.Sl(.'ﬂ) ([4]).
w2

Si [57-;%»»] B 3{": (/;3 Te (51-‘9,,-9.)2)(1)0\2}
9 (5)
+ 4ni rﬂ [ S
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2
where 3 is the € -coupling constant.

Let us now consider the partition functional of the proposed

string theory with complete action S [ )(", fa . SZ] =
[ ]
!

Pt Selx', 9.1 + S1 (89,1

(see eq.(3) and eq.(5)).

(6)

2= \Amla,, %7 47081 en(-S04a,21)

Q
where J. [51] being the covariant S0(3) - functional Haar
measure needed to define in the path integral framework the
quantum 50(3) - ¢ -model eq.(5).

At this point, it is basic for our propose that the bosonic
string theory eq.(B) can be fermionized due to the presence of
the multivalued Wess—Zumino, functional r:z [ ~52,("-]

({4], [5)) and, thus, leading to a string possessing a (real)
fermioni; structure in its world~sheet. The fermionized version

is given by the following partition functional

/= Vs Ca W] 4t d0v
exp (:— '._\ So[j(i’céw‘l-sa[ﬂlg‘bl‘\’] -

27«
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with the (covariant) fermionic action SJ[—Q)CJ“, I\P_J written
ALY
down below { g“b(l): (Cv eb)(l’(;w )

S [:,5,,4]= 2 ) (¥ e (@372 2) P)mds
Ay T o

Here, the Majorana fermion two dimensional field 4’(1) belongs
to the fundamental representation of the S0{3) group.
We shall argument that the above quantum fermionic string

theory in R2 is formally equivalent to the 3D - I.M. at the

\ {
©x = 2u -R% ETGG |
In order to suggest this equivalence, we use the (random)
Wilson lattice approximation ([6]) for the acfion SJ f.n- ;%qb,\l)]
(see eq.(8)) and evaluate, the (covariant) fermionic functienal
integration tl[‘¥1 in eq.(7). We, thus, obtain that in the strong
coupliné limit %1*'0 y the fermionic functional determinal: det
( e:; )’“ (iDm*g_YL'lQ“J)_ ) } can be expressed by a .sum over

closed contours C($) defined on the string world-sheet S weighted

-1
by the SO(3) Wilson Loop factor W[{(s)] = s [He“Paf)Jl ol-“-k
5
([8]). Now due to the topological meaning of W[C(S)] as being a

topological invariant associated to the immersion of the string

surface S into the space-time R® (W[C(S)] € Tri(S()(B)) T 22 Y,

we can follow the homogical-homotopical argument of Sedrakyan-
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Eavalov ([7], [8]) to see that the lattice version of the above
quoted sum'gfer C(8) coincides with the 3D -~ I.M. functional

@ [ C (_S)-] (see eq.(1)), and, then,
concluding our argument.

It will be a subject of another paper to investigate in full
detail the phase structure of the above proposed quantum string
theory.

I would like to thank the Gruppe Teorico at Rome University
for the warm hospitality. This work was supported by C.N.P.q.-

Brazil.
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