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Abstract

It is shown, for a wide class of operators, that the solu-
tion to the corresponding heat equation may be obtained as
a series. This is accomplished by the inverse Mellin trans-

form of the Green functicn of the complex power operator.
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A renewed interest on the heat equation was observed these
last years. Among the several retombées is the regularization
of determinants of differential operators that arrives in ‘the
Feynman path-integral approach to Quantum Field Theory _[:l,éj.
These determinants are related to the generalized zeta function, on
which informations can be obtained in some cases from the solu-

tion of the heat eguation,
d _ \
3t F(x,y,t} = AF(x,y.t} , (1)

where t is a (time) parameter and x and y are points of a
D-dimensional space-time Euclidean compact manifold without
boundary; the operator A acts on the x-variable. For more gen-
erality, A may be taken as é pseudo-differential operator [2,:{].

Under some conditions the power operator A% (s complex) may
be properly defined. In this case, the Green's function of A%,
Z{(s,x,y} is related to the solution of eq. (1} by a Mellin

transform,

Z(s,x,y} = ﬁ}- J’dtts-]fF(x,y,t} . (2)
o}

We show in the following that in situations when it is possible
to have a solution of the fundamental equation Az = §(x-y}, we
can always obtain a .general solution of eq. (1} by an inverse
Mellin transform,

-— 0

F{x,y,t) =I d Ims t_sr(s}z(s,x,y} ’ (3)
+

2im
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provided Z(s,x,y! can be extended to the complex s-plane. The
s-integration in (3} goes parallel to the imaginary axis, and
Re(s} must belong to the analyticity domain of Z(s,x,y)}.

As an illustration of the method, let us take A to be the
Laplacian operator, A = -3% in D dimensions. The Green func-
tion of AX, for real integer positive k, z, (x,y}, is well known
[4]. starting from this result we perform the extension from

integers k to complex s-values, obtaining a meromorphic func

tion,
i'"% D "g""s
. g & ‘Ti{z=s)(P+io) D
Z(s,x,y)=(-1} 5 + Re(s} < 5 , (4}
4°r(syn?
D
where P is the quadratic form -] (x;,-y.)? =-(x-y)>.
i=l

The singularities of the factor TI'(s}Z(s,x,y) in the integrand
of eq.. (3} are poles located at the points s =j-+g,j=(hl,2”..
(coming from P(%-—s}} and s = -3j (coming from (P +io) +s}.The
integration . contour e, in fig. 1} may be displaced to the
right, picking up succéssivelyithe contributions from the poles
at s = j-+%, from j =0 up to j ==, The procedﬁre gives the re- .

sult,

D .
- — OO \ J
F(x,y,t} = (-1} P (ant} % -.-%-(ij) = (-1} 2(ant) e{p[—(x—y}z/4t]

j=0 J°
(5}

which is the well known solution to the classical heat equation.

The method may be extended formally to the .case of a
general pseudo~differential operator of order m, definedon the
D-dimensional compact manifold. When Re(s) < -2, A% has a

continuous Kernel K(s,x,y} [ 5] which is related to the Green
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-3-

)

function 2(s,x,y! throught K(s,x,y) = Z(-s,x,y). Then eq. (3}

is rewritten as,

dIms
F(x,y,t) = J Sr(s K(-s,x,y!} r (6)
Yt w0

In the approximation used in [ 5] to construct the power opera
tor As, the diagonal elements of the Kernel, K(s,x,x]} extend
to meromorphic functions of s, whose poles are located at s =
j%n- , J=0,1,2,..., with known residues. The elements K{s,X,y;
X # y, extend to entire functions.

To proceed as in the proceeding case, we note that there are
double poles in the integrand of eq. (3} for real non- positive
integer values of s, s = -2, £ =20,1%1,2,... . The other poles
are simple ones (fig. 2}. The integration contour ¢, (fig. 2
may by displaced to the left, picking up successively the simple
poles as before. When the displaced integration contour meets a
double pole (the first one at s =0), a slight different pro-

3
cedure is needed: writing T(s}K(-s) R %} , we perform

sv=d (gag)2
an integration by parts, obtaining an integral of the type,

dImst—s
2im s+ 4

d
f -ty g (s) + 32

But from |_5] the residues of K(-s! at s =- % vanish, which sup
press the term in &nt in the integral above. Thus the diagonal e-
lements of the solution of the general heat equation are always

expressible as the following series:

_ v -2 8¢ v m
F(t,x,x) == J ¢t -ye m p(Rd (7)
2=0 ds|s=-a Jzo ( )

_D':i ¥ 09"'19"2’
o
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where Rj is the residue of XK(-s,x,x} at s = Eﬁi .

Some comments are in order. The solution gI?en in eq. (7)
if we take A = - 32 does not coincide with the known solubtion
for the Laplacian which we have reproduced above (the case
F(t,x,x) corresponds to take y = 0 in eqg. (5}. This is due tothe
fact that the analytic structure of the Kernel asgiven in [5]
is rather different from that of the exact Kernel obtained
from the exact Green function of our first example. Actually
this is not surprising since in [[5_| an approximation is made
to the power operator 2%. Even so, this approximated Kernel re
produces exactly the axial ancmaly term for @4[6 ,'7:] . Perhéps this
curious result is linked to the fact that the radiactive cor-
rections do: not contribute to the axial andmaly.

The method described here may be used for precise calcula
tions in the case of order g differential operators of the gen

eral form

Qy*,e.+0
31

A (x} .
Z. Qy...0 .axl".l...ax- %n
G t...ta<m n n

These will be the subject of a forthcoming paper.
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Figure Captions

Fig. 1 - Poles of T (s}K(-s) for the case where the A is Laplacian.
K(s} is the exact Kernel of A®.

Fig. 2 - Poles of T(s)K{(-s} for a general pseudo differential Op-—
erator A; K(s) is the approximate Kernel of aA°as given

in ref. |_5].
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