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Resumg

Um modelo quantico elementar no qual coordenadas espaciais
e de spin estdo correlacionadas, e que admite solugdo analitica
e exatamente resclvida. Ilustra aspectos que raramente 830
tratados em cursos basicos, além do que, exemplifica claramen-
te os conceitos de ligagao e antiliga§ﬁo, efeito Franck-Condon

e a interagdo efetiva entre spins.



ABSTRACT

An elementary, exactly solvable, quantum mechanical model in
which space and spin cqofdinates are correlated is fully developed.
It clearly illustrates aspects which are seldom treated in elemen
tary courses. Furthermore, it provides simple examples for the con
cepts of bonding, antibonding,'Franck—Condon effect and effective

spin-spin interaction.

PACS: 03.65.Ge

Key-words: Quantum mechanics; Correlations between space and spin
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INTRODUCTION

The examples discussed .in basic courses of Quantum Mechanics
seldom deal with cases in which spin and space coordinates are
correlated. Here wé present an exactly solvable model which dis-
plays this characteristic and also other interesting = features
which make it appropriate to illustrate some common concepts such
as bonding, Franck-Condon effect and effective spin-spin interac

tion through electrons,
MODEL

Let us consider an electran coupled through local isotropic ex.
change interaction to two free.spins at sites a and -a, (Fig.l).
The model is one-~dimensional in the electron space coordinate. The
spins, however, will be three dMional vectors with the z-direc=~
tion taken as quantization axis. The Hamiltonian is

H =-£i-+-JE.[§16(x+a) + §26(x—a)] . (1)

2m*
The first term represents the kinetic energy of the electron with
mass m*. J is the coupling constant of the exchange interaction
between the spin & of the electron and the localized spins glemd
§2 at -a and a, respectively. &(x) is Dirac's delta function.

An electron in an attractive §-like potential in one dimension
has only one bounded state which, in the absence of magnetic in-
teractions, ié doubly degenerate in the spin coordinate. We will
limit ocurselves to consider only the bounded states of H. We are

thus in principle confronted with a system of 2x2x{251+1) 4-(252+l)]



states. One factor of_z stands for the spatial bounded states of
the §-potentials, another factor of 2 stands for the ehktnm1sph1
states, and the localized spin 1 has 25i+1 spin states. For sim-
plicity we will consider spins of the same magnitude: §,=8,=5. We
develop the solution of the problem as far as we can without spe

cifying S; however, later on, to get manageable closed results,

we deal in detail only with the case S=1/2.
SOLUTION OF SCHRCDINGER'S EQUATION

We note that H is invariant under a transformation Q which changes
x into -x and simultaneously interchanges the spin subindices 1

and 2. Thus, H commutes with Q:

[H,Q] = 0. (2)

Since 02=1, the eigenvalues of Q are g=f1. This allows us toclas
sify the eigenfunctions of H in even (g=1) and odd (q:-.l);1 Fur-
thermore, since interactions of the form ;'gi conserve the z-com
ponent of the total spin, H commutes also with thézqampmrmt 8%

of the total spin 3=-§+§1 +§2:
[H,5%] =0 . (3)

Therefore, the eigenfunctions of H must also be eigenfunctions of

4% and we will label them with the eigenvalues of 4%, Accordingly,

we propose wavefunctions of the form



wn'q(x) = E [AmUm-+BmVﬁ] e for x>a
_ -kx - kx -kx - kx
by, qX) = E{[C“‘e +qG, & 10 _+[D e +ab, , eIV } (4)
for |x|<a
kx
wu'q(x) = qE[AM_mUm-fBM+1_mVﬁ]e for x<=-a
where
u_ = a|m>1|M-m>2 (5)
and
v, = Blm>, [Melom>, . (6)

Here o and B are the up and down electron states, respectively,

s?q = i s%p =~.—--LB . (7)
2 2
m>, are the eigenstates of Sz:
z .
silm>. = m|m>, i=1,2 . (8)

In the sums, m runs over the values -S, -S+1,..., S, with the con
dition that the spin states exist, namely, |[M-m|<sS or |M+1-m|<s,

whatever applies. We can verify that

Qwu'q(x) = qwn'q(x) . (9)
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and

2 _
4 wn'q(x) = (M+1/2)¢M'q(x) . (10}
To demonstrate Eg. (9) we use the relations

QUm = UH—m
(11)

va = vM%l—m-

which follow from the definition of Q and Egs. (5) and (6). Eq.(10)

follows from the relations

4 Um = (M+1/2)Um
(12)

z :
4 Vm = (M+l/2}Vm

which are a consequence of Egs. (7) and (8). For k positive, wu q(x)

has the boundary conditions appropriate to a bound state of enerqgy
E = - 5% (13)

The ansatz (4) contains, besides the energy, 4x(25+1) oconstants

to be determined. The continuity of ¥ (x) at x=a requires that
M,q"

: 2ka
Am = CIII + qCM-m e

(14)

) 2ka
By = Do+ Py, n® *

The solution of Schrodinger's equation at the singular point x=a



requires that?

;. s
&2 ud ( ] 35.5,(a) (15)
2m* {1d Xm=a

+(=) stands for the limlt of the derivative from the
right (left). That is

where (dy/dx)

-A_+C -qgC eZk"'1
‘m m

= ——[(M-m)A -+f(M-m)B 1
(16)
-B_+D_-gD eZke | K (Myl-m)B_ + £(M-m)A ]
m m M+l-m 2% m m
where k=2m*J/#?. To derive Eq. (16) we write 8.8 =szs; ]2'[s+52+s S*],
where si=sx

+ _
+is¥ and S§=S§skisg are the raising and lowering oper
ators, and we use the result

+
s SZUm = f(m)Vm '

(17)

where f(m)=[(s—m}ﬁhm+lnlm. *Egs. (14) and (16) are a system of

4x (25+1) homogeneous equations. The roots of its secular determi-

nant yleld the energy eigenvalues %

o .

Bgs. (14) yield

2ka
c = Am_qAM—me

m l_eéka |
(18)
2ka
D = Bm_qBH+1—me
m l_e4ka

which replaced in Eq. (16) give



2ka K . :
qA,_~A e = ;; sinh (2ka)( (l‘!l.--m)Am + £ (M-—m)Bm]
(19)
2ka K .
9By 1em ~ Bp® = ;;smh(zkalt-(m1-m)3m+ f gu-m)Aml ]

This system of equations cannot be further reduced because coef-

ficients with different subindices m are coupled together.

RESULTS FOR 8=1/2

In the following we restrict ourselves to the case S=1/2.

For convenience, we introduce the dimensionless variables
t = = and d = 2m*Ja/#? , {20)

and use the subindices + and - for +1/2 and -1/2.

i) Case M=1

For M=1, Egqs. (19) reduce to

A, (q-—eZka L sinh(Zka)) =0
2
(21)
A_=B_=B_=0.
The secular equation can be written in the form
R, = %(l-bqe-d/t) +1=0. (22)

Only the roots for which &/t>0 (that is,k>0) are physical. For d>0

(3>0), Eq. (22) has no positive root. For d<0 (J<0), there areneg



ative roots; that for g=1 corresponds to the ground state E3 (bonding)

and that for g=~1 to the excited state E6

shows E; and E, as a function of 4, which is a measure of the sep

(antibonding); Pig. 2

aration of the d{~like potentials (dsa). The energy E is given in
units of J2m*x10™°/(242).*

From Egs. (18), (19) and (21}

e-ka
C+ - ~ka: _ka A+
+ge
{23)
C =D =D =20
- + -
and the wavefunction takes the form
'e"kx for xra
' e“kx+ ekx ka
= e +ge .-
Vp,q %) = a [3/2,3/2> {E 25— for |x|<a  (24)
e +ge
t kx _
ge for x<-a

Here |3/2,3/2>Ea|1/2>1|1/2>2 and A becomes a normalization con-
stant. The values of k can be obtained from curves 3 and 6 of Fig.2

using k=k/(2t) for g=1 and g=-1, respectively.

ii)Case M=0.

For M=0, Egs. (16} reduce to

(£ sinh 2ka - e2k2

)A. +gA -t sinh(2ka)B: =0
2 + b +

2ka

A - \(32': sinh2ka +e““*)a_ = 0 (25)

2ka

~t sinh(2ka)A, + (q-e %%sinh 2ka)B, = 0



The secular equation can be written in the form

R2 = 0 {26)
where

2 _ . -
R, = 3 (1-e 2d/¢t +-;-'- (li+ge d/t)—l_,;, (27)
16

and R, has been defined in Eq. (22). The energy eigenvalues coming
from the roots of R1 were already discussed in (i) . For those roots,
Egs. (25) yield

A=A =B (for R, = 0} (28)

as it is easily seen by direct substitution. From Egs. (18) and

{19) we obtain
C =C =D == —mm—m™m A , (29)

and replacing in Eq. (4) we get a wavefunction which is like that

given by Eg. (24) with the spin state |3/2,3/2> substituted by

V3|3/2,1/2>

of1/2> |-1/2>, + a|-1/2> [1/2>, + 3]1/2>1|1/2>2.
{30}

V2 a|1,0> + B]1,1> .

In fact, the energy branches 3 and 6 in Fig, 2 are four-fold de-
generate, corresponding to the four spin states |3/2,5a} with

8% =372, 1/2, ~1/2, -3/2, which must have the same energy in vir-



tue of the isotropy of the spin interactions.
We now consider the eigenvalues and eigenfunctions produced by
the roots of Ryt

R, =0 (31)

For J»0, Eq. (31) has one positive root (in terms of t) for each
value of q. The corresponding energies are plotted in Fig. 2 {curve
4 for g=~1 and curve 5 for g=1). For J<0, Egq. {(3l) has one nega-
tive root for each value of q; the corresponding energies are plot
ted in Pig. 3 (curves 1 and 2 for g=1 and -1, respectively. Egs.

(25) now yield
A +A_+B = 0 for R, = 0, {32)

and from Egs. (18}, (19) and (32)

C = = o . A = B {33)
e a .

At this point it is convenient to introduce the notation  used
in the algebra of coupling angular momenta.>®> With the localized
spin states we can construct the following triplet states

|1,1> = |1725 }2/2>,

(34)
|1,0>

.5;[{1/?>1|_1/2>2-&|-1/2>1ll/2>2]



~ 10 =
and also the singlet state
1 _ _ '
|0,0> = E[[1/2>1|_1/z>2 - |_1/2>1|1/z>21 (35)

And by coupling the electron spin to the above triplet states we

can also construct the states

|3/2,1/2> = /gali,w + /—g-BII,D
(36)
|1/2,1/2> = ﬁg Bl1,1> = /% a|10> .

In the kets, the first number denotes the total spin and the sec
ond one its z-component, Using Eqs. (32-36) and after a bit of al

gebra, Eq. (4) yields

/§'B+{'|1/2,1/2> + Wa|0,0>}e"kx for x>a

Vo,q =
~kx kx
_ 3 -ka e +ge :
wo:q B /ZTBF {e-ka+qeka |1/2'1/2> *
(37)
-kx kx
+ W E—E—:HE-— a|0,0>} for [x|<a
~ka ka
e ~ge
v. = /3B al|1/2,1/2> —wa|0,0>}e**  for x<-a
0,9 7 2.4 i !
where
2A +B
We oot o ﬁzt:(l d/t) (38)
/‘B 4

and ka=d/(2t). B, becomes a normalization constant. For |x|>a, W
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is the ratio of the amplitudes of the singlet and triplet compo-
nents of the localized spins in the wavefunction. The values of w
are plotted in Figs. 2 and 3 (dotted lines labeled in corxespond

ance to the energy branches, scale to the right).

DISCUSSION

i) Energy Spectrum

For 5=3/2 (and any 62), the only possibility is the parallel
coupling of the three spins. Thus, for J>0 there is a repulsive
force between the electron and the 1ocaiized spins and bound states
cannot exist. On the other hand, for J<0, the interaction is at-
tractive and there are bound states (curves 3 and 6 of Fig. 2).
In the limit d+~ and neglecting spin degeneracy, we have twd de-
generate bound states, corresponding to those of the individual
d-potentials. As d.decreases_to the point that the overlaping of
the localized‘wavefunctions becomes appreciably, the levels split
into a bonding even ground state (curve 3) and an antibemding odd excited
state_(curve 6), At a critical distance d=d =4, the antibonding state merges
into the continuum, and for d<d_, only one bound state is left.
This is consistent with the fact that for d;0 the problem becomes
equivalent to that of a single G-poteﬁtial of strength 2J, and a
§-potential has only one bounded state.

When the coupling of the three spins is such .that the total
spin 4=1/2, an interesting and "frustrating” situation arises for
J<0. The electron would like to be parallel to the two localized

spins but it cannot as it is forbidden by the conservation of the
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total spin 4=1/2. Thus, a complicated spacial-spin correlation de-
velops between the electron and the localized spins aimed to min
imize the enerqgy. In the limit d+« there is, in pfinciple,nognqg
lem as the electron may localize at one §-function with its spin
parallel leaving the other (far away) to have spin antiparallel.
This state is twice degenerate because the localization may happen
at either 6~-site. As 4 decreases, the electron may profit from
the correlation and the delocalization to lower the energy of the
bording state. However, as d+0 the only possible state is one in
which the localized spins are in the singlet state andthe exchange
energy vanishes (qurve 4 éf Fig.2). Thus, there is a finite distance dmin:ﬁar
which the energy is a rninimIn(dmin= 3.661, E . =-7.54). The equilibrium
distance in the excited electronié state, d=dmin,differs from the
equilibrium distance, d=0, of the ground state (Fig. 2}. Thig sit
uation is commonplace in meolecular systems and leads to the Franck-
-Condon effect, that is, to a displacement toward lower frequen-
cies of the emission with respect to the absorption bands (Stokes
shift).® In an energy diagram like that of Fig. 2, optical tran-
sitions would be represented by vertical lines between energy lev-
els (transitions with fixed coordinates, in this case the coordi
nate being d). The reason for this éffect in moléculés is that
the electronic transition is too fast to allew for the relaxar
tion @f the coordinates to the new equilibrium values. Thus , in absoption

==25 to E,=0 at d=0 (hwg:Ea~E =25), and in enks-

3 4 3

sion fanZE4=-7.54 to E3=—10.62 at d=3.66 (hwe=E4—E3z3.08}; the Stokes

shift is then E:ﬁiwh-wE)=22.92. The antibonding states merges into the con-

our system would go from E

tinuum at d=8/3.
For 4=1/2 and J>0 there is a strong antiferromagnetic correla-

tion between the electron and the localized spins in the . ground
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state for small d (curve 1 of Fig.3), The strong binding energy as compared

with the case J<0 reflects the fact that for two spins 1/2, the scalar prod
uct 5.2 in the singlet state (antiferromagnetic ordering) is -3/4

while in the triplet state (ferromagnetic ordering) is 1/4.

ii) The wavefunctions. Correlations.

In the wave functions belonging to the total spin 4=3/2, [(Egs.
(14)}, the spin coordinates can be factorized out and therefore
the spin and space coordinates are not correlated.

Fox_: $=1/2 however; the mixture of spin states depends on x. Space and spin
coordinates are correlated and we can, for instance, ask question like: In the
state 4 (Fig.2), what is the density of probability P(x) of finding the elec—
tron with the spin up when spin 1 is up and spin 2 is down?. By projection the

wavefunction given by Bq. (37) with g=-1 on the state a|1/2>1|—1/2>2 we cbtain

(V3 w=1)2 o 2kx for x>a
B? _ . | -
P(x) = = . ¢ /3 wcoshikx) _sinh(kx}}’-2ka for [x|<a (39)
cosh (ka} ginh (ka)
(/T wel) 2 @2 for x<-a

Fig. 4 shows P(x) for d=5. The state 4 belongs to J<¢ and accord-
ingly, the probability of finding the electron with spin up at =-a
(where the spin 1 is up) is larger than at a (where spin 2 is down).

Since the model has been completely solved we can calculate and

interpret all possible cases in a similar way.

iii) Effective spin-spin interaction

The energy branch Ey belongs to states with 4=3/2 (for instance(24)), for
which the localized spins are parallel, that is <§1.§2>=l/4 {curves 3,6 1n

Fig.5). Here <-..> stands for mean value in the state considered. Along  the,
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energy branch E , however, there is an admixture of = singlet and triplet
states (Eg.(37)). In Fig.5 we have also plotted the mean value of the scalar
product <§1.§2> in all four states with 4=1/2 as a functioﬁ of d. We see
that for branch E,, is -3/25<8, .§2>g -1, indicating that the localized spins
are mostly antiparallel. We could imagine that the electron is not there and
interpret the energy differerxe E4—E3 as the necessary energy to flip cne lo-

calized spin in virtue of the presence of an effective interaction of the

form

H&ffo = Iglcgz L] (40)

Then, by definition, the effective exchange coupling constant I be

tween the localized spins is

Iz 1°72°3 172 4 (41)
B37E,
I is plotted as a function of d in Fig. 6. Its asymptotic be-
havior is
1 =3 g-d/4 (42)
64
Thus, Heff given by (40) is an effective spin~-spin interactionme

diated by the electron. This mechanism is analogous to that - re=
sponsible for the magnetism of the rare earth metals and for an
interaction between nuclear spins in metals; in those cases, how

ever, the interaction is mediated by conduction electrons.’
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CAPTIONS

Model potential. The electron interacts through a local
exchange coupling with spins § and § at -a and a.

-Energy jevels E as a function of the distance between the

localized spins d, for J<0. The coefficient w (which is
a measure of the singlet amplitude of the localized spins)
is shown on a different scale (to the right). Levels. 3
and ;6. belong:to pure spin states (s=3/2, 8%).

Energy levels E as a function of the distance between the
localized spins d, for J>0. The coefficient w (which is
a measure of the singlet amplitude of the localized spins)
is shown on a different scale {(to the right). Levels 3

and 6 belong to pure spin states (4=3/2, §%). Note that
here w is negative.

Density of probability P(x} of finding the -electron with
spin up when it is in the state 4 (Fig. 2), and the spins
1 and 2 are up .and down, ‘respectively. The parameters are
d=5, w=1.9878, ka=0.63. The distribution is given in ar-
bitrary units (not normalized).

Mean value of the scalar product of the spins §1an1§2,
<§ § >;+ in state i as a function of the distance d be
tween them. Note the change of scale at d=15.

Effective exchange coupling constant I between the: local
ized spins as a function of their distance d.
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