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ABSTRACT

We consider a parastatistics ideal gas with energy spectrum
E a|E|“ (a >0) ar even more general in a d-d&imensional box with
volume V (periodic boundary conditions), the number N of the gas
particles. being well determined {(real particles)-or not (quasi.parhbixies).
We aﬁxmhﬂxathermdn'ﬂxnmndwﬁmdcmgmntuﬁes.uﬂmmﬂxﬂ;pouxﬁialéumenud
enerqgy, :specific heat-C, equation of states, létent heat, average
numbers of particles)'for_érbitrary d,a,T (temperature) and p
(maximal mmber of particles per state allowed in the parastatistice).
The main asymptotic regimes are worked out explicitely. In par-
ticular, the Bose-Einstein.condensation for fixed !dénsity'.- N/V appears
as a non uniform convergence. in the p +« limit, in complete ana-
logy with the standard critical ‘phenomena which appear in interac
ting systems in the N +« limit. The system behaves ~ressentially
like a Fermi-Dirac one for aflf finite values of p, and reveals
a Bose-Einstein behavior onfy in the p +« limit. For : dimstance,
at low temperatures C&T if p <« and capd/® ¢ p >, Finally

the Sommerfeld integral and its expansion are generalized to an

arbitrary finite p.

Key-words: Parastatistics; Ideal gas; Bose-Einstein condensgation;

Sommerfeld integral.
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1 INTRODUCTION

Since the pioneer woﬂckw-&mﬂjletﬁjjnany different studies
have been done which intérpolate between Bose—Eithein ard
Fermi-Divac statistics {seé for instance Ref. [2]).Po$sjble appiica-
tions have been searched in Field Theory and Elementary Particles phy-'
sicstb'qj as well as in Condensed Matter Physicés "glmoleculaf
excitorns and magnons ] , quantum Hall effect E8]) . The ideal gas
in parastatistics naturally constitutes a.priviiegﬁd refer-
ence sYstem which can be used as unperturbed starting point
. to study more complex systems. Also it will be shown that many
- exact (or asymptotically exact) analytical expressions can be
obtained which amﬂﬁ serve as testing métefiai.for various ap-
proximation methods. The purpose of the present paper is the
establishment of the main thermodynamic properties of such
gas at fixed volume in d-dimensions (d>0), and for a quite general energy

o - d af2
gpectrum £ =(j§1ajk;) : (aj >0 and @ >0; o =1 corresponds to
photonsg and to short wave-vector acoustic phonons, among others;
o =2 corresponds to non relativistic free particles and to
short wave~vector acoustic magnong in Heigenberg feérromagnets,
among others).

In Section 2 we introduce the specific¢..ideal gas model
and obtain the associated density of states; in Sections 3
and 4 we calculate the main. .th'érfnodéna.rnic‘. gquantities  respec-
tively corresponding to fixed {(real particles} and - unfixed
(quasi~particles) total number of gas.particles; finally .we-
conclude in.Section 5. .In Appendix we.generalize to para-

gtatistics<thesSomerfeld integral and its standard expansion.
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2 PARASTATISTICS IDEAL GAS - DENSITY OF STATES

We consider an ideal gas of N particles (or quasi-particles)
in a d—dimensional box. Each particle behaves as a planar wave

with energy spectrum given by

€ = ..g a.kf)qiz (1)

j=1 3 1
where aj >0 Vj* o >0 and'kj is the j-th component of the ' wave
vector K. The particular .case a; =a, Vj' vields ¢ «k%(k = |k|}.
Pericodic bouhdary conditions are considered on the box -~ which
is assumed to be an Orthogonal hyperparallelepiped with side.

d
lengths {Lj} and volume Vv = .1

J

1 Li' The possible wave -wectors

are given by

Ky = Lo My (n; =0,21,22,...53) (2)

which inserted into Eg. (1) yield

d (2m)?a, ,
. n, =1 3
521 2oz Ui | )
i

Thigs is the equation of an hyperellipscid whose volume provides
the number of states ¢(¢) whose energy is equal to or lower than e,
Consequently

d/a

§(e) = g(g%) (4)

with
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dd/zrt9+1)( 11 11’2 a/d

€y : Vd/a (4)

The density of states p(e} is therefore given by

d/a~-1 '
_dele)y _ 1lrse
oo = SFE - =2) (%)

_Notice that we treat ¢(c) as if it was a "soft" function of e:
this is correct in the thermodynamic limit we are . interested
in (N »ew, Vo, N/V+constant; EO-+0). The parastatistics thermal
equilibrium average number-f{e) of particles per state is

given by EI‘:]

1 p+l :

f (€) - - {8)

EIC DRI ST TN
or alternatively by
E JB(P j)BCemi)
£(e) = 425 (6")
5 iBle~1)

j=0

where B El/kBT is the inverse temperature, u is the - chemical
potential, and p is the maximal number of particles allowed per
state (p =1 reproduces the Fermi~Dirac statistics and p =+

+the Bose-Einstein one); see Fig. 1.
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3 FIXED TOTAL NUMBER OF PARTICLES (REAL PARTICLES)

3.1 - CcChemical potential and ground gtate population-

We consider here the total number N of gas particles as
well determined. If we respectively note N and Né.the_popula—
tions of the ground state and. the excited states, then

N = No(Tl + NB(T) (7

We shall now calculate the chemical potential u(T,p), which

is completely determined by
N = J:a'a ple) £1e} (8)
)

Let us first consider the T+0 limit, in which case fle)

is the step function indicated in Fig. l. We then have N, =N

and
Mo uel p ed/a-_l
N = J_de;ﬁe)p = J_ - 7o de
0 0 0
vk R (9)
o _
where u_ (p} = u(0,p) and we have used Eq. (5) (with p(e) =@ for

€ <{). Consequently we have that

uotll

'HO(P) = '5673- (10}
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where
ug(l) = (‘? L e (11)
or even

1/2 al/d
R ERA R Y L L

where we used Eq. (4') to make explicit the dependence of y o on
the concentration N/V. It is convenient to introduce the fol-

lowing reduced quantities:

t = -kBT/uO(,I_I..)., (13)

W= u/ug(l), (14)
and

X = s/u (L) (15)

Equation (8) can therefore be rewritten as follows:

Y e 1 _ P+l -‘ .
a _ a/a-1 —— = _ (16)
d J dx x L(x-u)/t.:l e(P*1) (x-u)/t _1_1

0

which makes obvious that, in energy units of uo(l),thewﬂimﬂcal
.potential (and in fact aif the-thefmodynamic‘quantities we
shall be interested in) depends on d and o only through the ratio

d/a .(gee also Ref. [9]). Through a further transfermation y =x/t we obtain
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-d o - + .
gt s (J)ﬂg!ydm 1[33;:%“-1 ) e(ﬁ%l)?réfﬁ)_._ 1] 4D
"whidh provides t as an explicit function of u/t,p and &/a. ~The
results are indicated in Fig. 2. As can be observed therein, the
thermal dependence of }i, for fixed d/a, flattens in the law tem-
perature region for increasing:p, and eventually exhibits, in the,
p-w~ limit and d/a >1, a “plateau” at i =0 (the width of the pla-
teau increases with increasing and not too high d/a -1). This
ig of course the Bos_e—Einsﬁein ooﬂiensation, and we see in  the. pre-
" sent framework that it appears in the p »= limit through a non
uniform convergence complétely similar to those ﬁhich are ob—~
served, in the N »® limit, for interacting systems presenting
phase transitions. |
No Bose-Einstein condensation at finite temperatures exists. for
d/0 < 1. In particulier for d/a = 1, this is easy to verify as the integral
of BEg. (17) is straidhtforwardly solved, and we obtain the follqwing de-

pendence of t on u /t:

1 1

t = e = e (18)
£n I—é@d)u/t £n E ejﬁ/ t
1 -eﬁ/t j=0

This expression leads,_- in the p +« 1limit (and taking into ac-
count that u < 0 for t %0), to the standard d= a=2 result,
namely

U=ten(l-e {19)
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where we verify that | vanishes at no other place than at t=0."

Let us now go baék to -the general expression indicated in
Eq. (17), and denote by t* the (finite) temperature-at thch
U vanishes for fixed p and d/a. It follows that

- ® _ 1 _ p +l
(g0 74/ = [ay yo/o 1|;‘y_1 e(pﬂ)y__J - e

o
The integral can be expressed (see page 325 of [10]) in .terms

of the Riemann.zeta and gamma funtions ¢ and I', and we obtain

_ 1 . -0 /d
th = - C(d/ulr(d/a+l)} (d/ea >1) (21)

These results are illustrated . in Fig. 3; note that

t_(d/a) = Lim t*{p,d/a). precisely is the Bose-Einstein condensa
e _

tion critical (reduced) itemperature (the phase transition only

exists for p +w}, and it is given by

_ - yd/a—l -a/d (22)
d
tc = [E dy ‘ey-l]
hence
~a/d
= E(d/u)r(d)’a‘+1):| (22")
1&/e~1) if d/a -1 ++0

v (22")

52 4{f d/a »«.
di

A few mare steps will lead us to the thermal dependence of the
(reduced) population N o/N of the ground state below the critical

temperature (above the critical temperature, NO/N vanishes 1n
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the thermedynamic limit N »«). We have that

NO 1 Nd 1 ao. . .
N - T =] - 8 J--de ple)f(eju =0)

o
a.d/a ® vdfa-1
= 1 ~ =t J dy X7
o YA N
hence
N
0 _ 1 - [ tN/e
21 (*‘:c)d (e xt,) (23)

where we have used Eq. (22}.

We now dedicate the :rest of this subsection to determine
the low- and high-temperature expansiohs of the chemical poten-
- tial.,

For the low-temperature asymptotic'behavior' '~ we. can usge,

into Eq. (17), expansion (A.1l5) of the Appendix (with A=1, v =

d/0 -1 and z =1/t) thus obtaining

i - D YT
p?/4 {1"' I{BE z (2m )l: (p+1) ] 3...0 (‘_1—3)}( )

m=1
(24)
The solution of this equation clearly has the form
- L . ' 2r
W= == {1+ }at (25)
A S }

The substitution of this expression into both sides of Eq. (24}
enables, by simple identification, the knowledge of {ar} up to

any desired order. To the lowest correction we cbtain
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CE 1_.1'_ zujd. --1)1: - (t +0id/l (26)
CY L 3 pFL ‘a e

Note the changement of curvature which occurs at d/a=1. As

a matter of fact, for d/o =1, the departure of J from 1/p is
slower than any power of t (and not only t?). For this case we

obtain, from Eq. (18},

2a e t/PEy (£ 40,d/a=1,p <) (27)
| I 271)
-1/t _ _
For the high—temperamre asymptotic behavior we can present Eq.
(17) as follows:
~d/ -”_.."et--]_? 1 = %—1

3 l_ezy-(p-i-l)J
0 o)

1
ay DGR o

-1,
= g° dey-a eV (1+e?7 + ..
0

| d_;
-(p+l)e(p 1)zJ dy-‘ya-i e~ (P*D)y (1 4 o (p¥1) (2= y)
)

+ 4as)

d . d
o -— =] _ 1 — =1 _
ezJ ay y&' eV + ezzI dy y* e Y 4o
o o '

-1
- (p+ 1) e(p"'l)ZJ dy y e'(p+1)y_ (p +1)e2(P+1)
9] o]
2zpd %) elP*lizr d g

eP()+—W+ see — (p+l)d/€11

4y _
d'yya o 2(p+1)Yq_

2 D zP( )

2‘1_-/0‘(;,.,,15‘{70‘ -1 °°°

hence
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Pz (zp+1)z
t74/% o efr(d 42 o
(a ) { d7u (p+l)d/a 1~ d/u(p+l)d/a {]

hence

oZ eP?

dla £p+1)d/a-1

2 v-Sent - 2nr(@41) -

gd/o tpd/“
2d/u'r(% '+1) (p+IiG [(d +l)]

Finally, by using z =u/t, we obtain

n -%-Ent - Lnl‘(%_+1) -

d/a+1 -pd/a+1

dmr(d ”). p+1)%_4' [:(d "'1)]

in-Seme- eenr(S +1) -

(t + =, vd/o) ' (28)

Note that, as expected, the highrtémperature leading terms daad

not depend on p (Maxwell -Boltzmann limit).

3.2 - Internal energy, specific heat, equation of states and

latent heat

The internal energy is given by
o
U =.J de e p(e)f(e) . {29)
0

hence



CBPF-NF-038/86

-1l~-
U _ - .
N uotllu {30)
with
£+1 w . 2:'&
-d .o J o 1l p+1l
t) == ¢ d e - — 1
u( ) o ! Y Y Ly-u’t -1 e(P"'l)(?‘llft) _1 (3 )

where we have used Egs. {S5S), {(9) and (ll). This expression, to
gether with n(t) determined in Section 3.1, completely determines the
thermal dependence of u and consequently U/N. The specific heat

C is given by
c=4d0 (32)

Therefore the specific heat ¢ per particle is given by

= d(U/N) du
¢z Cf = Ll = = 33
Nk, s " 4t (33)
where we have used Eq. (30). The resuits are presented in Fig. 4.
Let us now discuss the low-temperature hehavior of ¢. For
finite p we can expand the integral of Eq. (31) as indicated in

the Appendix, and then use Egs. (26) and (27); we obtain

# (t++ 0 (34)

This is an interesting result, as it shows that asymptotically C=T {oxr afl
g§inite values o4 p. and d/c,. thus generalizing. the well  known

regult for quasi-free electrons in a metal (d=3,a =2 ahd.p=l).
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e .

In the p » « limit , Bq. (31) becomes

a 'a"'l'l °°. ~dfo
t) == ¢t d = t <t
u{t) % J Yy K2 ( c)

where we have used that § = 0 iE t <t . By using 107

325) we can rewrite this equation as follows

‘_i.+]_
we) = $r(8 +1)2(2 +2)¢°

hence

where we have used Eq. (22'"). The C de/a

(35)

(page

{36)

(37)

(37"}

law we have obtained

generalizes the Debye law for acoustic phonons (d =3,0 =1) as well

as the T”2

magnet (d =3,a=2).

law for magnong in the standard Heisenberg ferro-
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Let us now focus the high-temperature behavior of c. The
“integral of Eq.-' (31) can be treated in the same way we did for
Eq. (17); we obtain

°v {1 b Sfa=l o BB/ ,___} |
o ?d[a+1p(d/a+l)td/a (p +1)d,uﬁ.(d/&'+z1)]l’tpd 7 |

(£t » w) (38)

“Note that in the Fermi~Dirac (Bose-Einstein)statistics, the specific’ heat
approaches the classical d/o value from below (ai:-ove) when d/o * 1, and the
opposlte happens when d/a <1; for d/a =1, the approach ~occurs
from below for all values of p., Consequently C vs. T presents,
for d/a >1, a maximum for p .hi.gh enough (the maximum becomes
a cusp in the p +« limit); for d/a <1, it presents a . maximum
for p Low enough, |

Let us now deduce the equatldon of states. The grand-canoni-

cal partition '?fumtionzﬁ assoéiated with the wavevector X is givenby -

T, R _ o (D B(eg-n)
Too= 14 BOOETH) o oy oPBlEgm) _le k (39)
—k . : 1-a ﬁ(€+_U)
k
The total partitic'm. function = equals ¥ Ip, consequently
T
N o PP (-p'fl-)__B(é.-l-l)
£n _=Jd£ o(e)dn, P Gy (40)

.0

We know from Thermodynamics that the pressure P satisfies

BPV = £n =

hence
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- _e'_'(P"'l)B(E_-]J)
B

BPV

st ole)dn
0

~d/a (@ y - (p+1) (y-Bu) o
_ \ afa=1 l-e : 3
3576‘ idY P T @

where we: have used Eq. (5). On the other hand, also from Themp

dynamics, we have that

2 _ . ABDV
ixed fu fixed Bu
-d/a-1 - - (p+1) (y-Bu)
_4a8 : d/a-1.,_ 1 -e .
- § e eyt b et

] o

And by using again Eg. {43) we obtain

(42)

Qe
<

which is exact for alf values of p. Eq. (42) transforms ‘the

analysis of the presgsure intoc that of U, which we have already

done.,
Let us finally catculate the latent-heat L (per particle} associated
with the Bose-Einstein condensation (first order} ph#se transition.

The Clapeyron equation states that
dey - - 43
r (§5 NEAERR (43)
where v_(v ) 15 the volume per partdcle in the noamal [condensed)

phase. But in the N >> 1 limit v vanishestli] and v_ eguals

V/N, therefore
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_ o (P ¥
e T\aT), W
c
_ m a[a(u/N) du
“Td[dT]T = %" 3 (3¢
Cc tc

where we have used Eq. (42) and the definitions of u and t. By

replacing Eq. {36) in this expression we obtain

L = kT r(% +1) 4 (% +1)(§+1) (/o

¢

and, by using Eq. (22'), we finally obtain

) ,1
44

k (' 4—#) (

e )

%-(d/a.-l) 1f  d/e =1 ++0
- (44%),

d/a+ 1 if d/a e

The dependence of L on d/o is represented in Fig. 5.

4 UNFIXED TOTAL NUMBER OF PARTICLES (QUASI-PARTICLES)

In the present situation N is unfixed, therefore y van-
ishes for all temperatures. The average rumber «<N>of particles is

given by

R 1 p+1
<N> = Jdep_(el [—gs_l- e(pﬂ‘)se-lj' (43)

e
)
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hence

k. .Tvd/a o
B Jd d/a-1] 1 p+1
—_— Yy
( ¢ ) o I:ey-l (p+15y_1:|

where we have used Eq. (5). It follows that faxr d/a %1

<N> _ t(d/a)r(d/u+l) o1 d/a -
2918 I'(d/2+l}( T a, ) P+
j=1 3

where we have used Egq. (4').

Let us now focus the internal energy. It is glven by

- ® 1 . p-+l
o '
hence
d/a+l
u _ 1 (kT J*dyya/a 1 ___p+l
v v | d/a e, &(PYLIV,
o ) =
hence
U c{d/u+1>r(d/a+1)d/a [t - —2er | ym /Ot sy
Vo jagal2 1/2 (p+1)
- r(d/2+1)( })1 .
. d/o+l
.where we have used again Ey. (4').The present U/V «T law gen-

eralizes the well known black-body T' Stefan-Boltzmann law (d=-
3, a=1, p+=). The Jeneralized radidtion pressure can be obtained

by replacing Eq. (48) into Eq. (42} which still holds.
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CONCLUSION

In an unified framework, we treat the parastatistics of an
ideal confined (fixed volume)} d-dimensional gas of N particles
(or quasi-particles} whose energy spectrum is given by Eqg. (1)
(which contains the important isotropic: case € xlilu(a >0)});
each state can be gocupied at most by p particles.' -We have studied,
for arbitrary 4,,p,T, and for both fixed and unfixed N cases,
various thermodynamic quantities.(chemical potential, average
populations, internal energy, specific heat, pressure and latent
heat). In what follows we summarize the main results.

/(1) The density of states satisfies p(e) « gd/0*1

+ This form
will imply that the thermal dependence of all equilibrium
thermodynamic quantities, and for all p, will depend on
d and o on through the ratioc d/a.

(ii) 'The Bose-Einstein condensation appears, for d/a"> 1, as a non. uni-
form convergence in the p -« limit, in complete analogy
with phase transitions in interacting systems which appear .
as non uniform convergences in the thermodynamic 1imit
N »w. We obtain the explicit dependence of the = ciitical
temperature T  on d/a (Eg. (22')): it is T « (d/a -=1) for
d/a 3 1, amiikwfia/d for d/a >>1. The macroscopic popula-
tion of the ground state satisfies N /N=1 -(T/Tc)d/“
for T_ch and d/¢ ¥1, The latent heat L is obtained as an
explicit function of d/a (Eg. 44 )); it satisfies LAr « }/2(d/>1)
for d/a #1, and L/T vd/a+l for-d)a ¥31, The picture whidh
emerges\(here-and in the paragraphs (iv) and (v) which fol

low) is that the p =+« limit is deeply different from any
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(1ii)

(iv)

other case (i.e. 0 <p <=). Moroever, all {§inite p para-
gases are qualitatively similar, and are wel.l characterized
by the Fermi-Dirac case (p =1). Within.this context, theé
view developed in Ref. |_27], where the d =3, u'=2 Bose~
Einstein condensation is referred for-aff values of p,

can be considered as deeply misleading.

For fixed N, finite p and low tempez;ature, the “chémical
potential presents a quadratic departure from the T = 0 value:(Eq.
(26)); the curvature changes its sign at 4/0 =1, In_ the
high . temperature regime the first two (or three for p>1)
dominant terms (of the chemical potential). do not ..depend
on p.

For fixed N, finite p, arbitrary d/a and low temperature,

the specific heat satisfies C = T thus generalizing the

‘standard result for quasi-free electrons in a conductor

(d=3,a=2,p=1). In the p+>> limit we obtain, for both

d/a

fixed and unfixed N cases, C«T ~thus generalizing the

Debye-law for acoustic phonons in a crystal {d =3,a=1)amd

3/2

the T ~law for magnons in a Heisenberg ferromagnet (d =

3,0 =2},

[v) For fixed N, arbitrary p and d/a, and high + temperature,

C approaches the classical value .(d/a)NkB.- For p low
(high): enough, C aproaches this value from below {above)
when d/a >1, and the opposite happens when d/o <1; con-
sequ'ently\ C presents, for d/a >1, a maximum for p high
enough (cusp in the p =+« limit) and: presents, ' for

d/a <1, a maximum for p £ow enough.
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"{vl) For arbitrary p. d/a,T and for both fixed and unfixed N
cagses, the pressure P and the internal energy U are re-
lated through U = (d/a)PV (V Zvolume), thus generalizing
the standard result U= (3/2)PV for d=3,a=2 and p=1,=.

{vii) For unfixed N, arbitrary p,d/c and T, the densiﬁy of the
internal energy (proportional to the pow'er irradiated

per unit area of the confining box) satisfiles U/V °-=Td,c"'+1

(Eq. (48)), thus generalizing the T Stefan-Boltzmann  law

(d =3,a=1,p+=}.

Also, since the 1968 paper by Gunton and Buckingham Eg:] {see
also [[12] and references therein), the Bose-Einstein condensation
is known to be related to the criticaliﬁy- of the . spherical
madel (n-vector model with n +=), Consistently, the fact  that
T. should vanish in the d/e+ 1 limit can be inferred from this xe

lationship.

Finally, as a closing remakk let us recall that. several

“13~
studies I- 16] are already available in which the bosonic

limit (p »=) is analysed under a variety of conditions (for
both spinless and magnetized bosons):By following along the lines
of the present.paper, it could be .interesting to extend those

results to arbitraxy values of p.
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APPENDIX~-GENERALIZED SOMMERFELD INTEGRAL
Here we generalize to an arbitrary finite p the standard Scmmerfeld

integral for the FD statistics and its low temperature expan-—

sion. We consider the integral

I{z} EJ;dYH(Y)f(y;z) {(A.1l)
where
flyiz) = —= pt 1 (p50), (A.2)

Y72 - o lP+1dly-2} 4

To characterize the function H(y) we introduce

y
Kly) = [ dy'H(y'} (A.3)

-0l

K{y) is assumed to satisfy the following requirements:

(1) lim K(y) =0 . (A.4)

yr-e
hence
ay - &, (a.5)
{ii) Iim £(y:z)K{y) = 0 ; (A.6)
Y-'m
{iii) R(y) is analytic at y = 2z.. : (A.7)

These conditions are almost always satisfied in the  physical
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situations as typical functions H(y) identically vanish for y <0, a-
symptot;ically behave as a power-law in 'the_y +o limit, and are
soft functions .at-y-=?z (H(y) might present singularities;, but
they are normally integrable and- located at places swh asy = 0,
and not at y =2z} ..

Integrating (A.l) by parts we obtain

I

I(z) = K(y)E(y;g)| - J dyx(y_)dféyzzz)

dyR(y) —gz— (A.8)

where we have used conditions (A.4) and (A.6) and the fact that

lim f(y;z) = p. By expanding K(y) at y =z we obtain
Y-)-—oo

I{z) =~ K‘Z)J Gy == - ) ¢
: o R dy n=1fB*
0 1.
= pK(z) - } (A.9)
mey | (A}

where we have used the facts that

and that df/dy is an even function.of (y -z) and therefore all
cdd terms in the sum over .n vanish. By using the  connection .

between K(y) and H(y) we can rewrite Eq. (A.9) as follows:

2m-1

2 ) oo .
I(z) =p J H(yldy + } l:d—zf:gl:l ' a (A.10)
m=

te dy
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with
= 1 rdxxzmi _ptl ::1-|
) - ]
m {2m) ¢ ] dax eCp+1)x_1 ex_lJ
TN R U G
(2m):f  (p+l) ™ ", l-e
- - o 2m
L (prl) T !, dinh®x
kA m
= r|l -————{(2m “"|B,_| (A.11)
(2m) I T (p+D) 2m 1- 2m
where in the last step we have used [18] (page 352) . By

being the Bernoulli numbers. By using the fact that |[B, | =

%Zm)!t(2m)/(22m-Lﬂ2m) we can finally express a. &S follows:
. 1
a_ = 2c(2m'J"E. - _] (A.12)
m (P+1)§m T

and consequently

o z
J'dgH(y)f(y;z) = pJ H(y)dy

w00 -

-

@ 22m-1
g 1 a H(y) |
2 z(2m) |1 e -
m;.l |: (p+1) <™ l:l[dyzm 1 ]

2 7’ 1
".’PJ H{y)dy + 5|1 -—— H'(z)
p+l

.'.

y=2

i

— Q0

+ -31%[ —— ]H"' (z) + ... (A.13)

{p+1)?®
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which is the generalization we were looking for.

Quite frequently H{y) is./defined as follows:
8 if y <0
H(y) =i _ {A.14)

ayY if y 20

In such case,Eq. (A.l13) can be xewritten as follows:

[ dyH(y)f(y;z)
o
_ 2{m-1)
—asY*l]) 2 g{3m} |7 L .
Az + 2 1= —| .0, (¥3)} (a.19)
mzl 220 [ (p+].)2':l 1] i=0

Finally if we identify y =€/k,T and z =u/k;T, - Eq. (A:I3)

takes the form

°° M
J deH(c)f(e) = 'pj H(e)de

- O O

-5 k T 21]1
+2 21 {Zm)[ -——T—l" ]Eizmn(zm'”(u)](—ﬁ—‘-)

m=1 (p+1)

—PJ H(E)de +-——[ :| 1R 4 (u)](
|- 1

+ ]l -
“[ ¢p+1;§:|

u H"'(u)](——— " ok.kg_T 5:| (A.16)
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' N3
where in the estimation of the rest 6[(1!3'1‘/“)“ ] we. have as-
sumed the quite frequent fact that g{n) (@) is of the order of

H(u)/n".
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CAPTION FOR FIGURES

Fig. 1 - Parastatistics with maximal occupation p: average po-
pulation per state as a function of the energy ¢ mea-
sured from the chemical potential u, for finite and
vanishing temperatures. The point (e-u,f) = (0,p/2) is
a center of symmetry.

Fig. 2 - Thermal dependence of the (reduced) chemical potential
for typical values of p and d/a. Notice that for all
p <= the behavior is qualitatively the same (in the
sense that {I is analytic for all finite values of t)
no matter the value of d/a, and can be characterized
by tﬁe.Fermi—Dirac (p =1) behavior, wheras ithe p + =
limit (Bose —Einstein) presents two different regimes,
one occuring for & < 1 (no Bose-Einstein condensation),  the
other one occurinf for.d/a >1 (Bose-Einstein condensation

‘due to non-analyticity of | appearing at a §inite tem
perature) . |

fig. 3 - Reduced temperature at which u vanishes as a function
of d/a and p. The p + » limit yields £he d/a-dependence
of the (reduced) critical temperature.cdrresponding to .
the Bose-Einstein condensation.

Fig. 4 - Thermal dependence of the (reduced) specific heat for
typical values of p.and d/asia-e). For the p += limit
we have represented in (f) the d/a~dependence of .the height’
of the cusép which appears in ¢ vs. t for d/a >1.

Fig. 5 - The d/o-dependence of the latent heat L per— patticle
(in units of kyT) associated with the Bose-Einstein conden-

sation (first-order phase transition).
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