ISSN 0029 - 3865

CBPF-NF-037/86
LAGRANGIAN PROCEDURES FOR HIGHER ORDER FIELD
EQUATIONS

- by

£.G. Bollini'*? and J.J. Giambiagi'*?

‘Centro Brasileiro de Pesquisas Fisicas - CBPF/CNPq
Rua Dr. Xavier Sigaud, 150
22290 - Rio de Janeiro, RJ- - Brasil

20n leave from Depto. de Fisica, Fac. de Ciencias Exactas de Univ. Nac. de
La Plata, C.I.C prov. Buenos Aires.

3Centro Latino-americano de Fisica - Brasil



CBPF-NF~-037/86

ABSTRACT

We present in a pedagogical way a Lagrangian procédure for
the treatment of higher order field equations. We build the
energy-momenfum tensor and the conserved density current. In
particular we discuss the case in which the derivatives appear
only in the invariant D'Alembertian operator. We discuss some
examples. We quantize the fields and construct the .corresponding
Hamiltonian which i& shown mot to be positive definite. We give

the rules feor the causal.propagatbrs.

Key-words: Higher order equations; Lagrangian procedures; Field
theory.
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1 INTRODUCTION:

Ever since the advent of differential equations for the
description of physical systems, the consideration of higher or
der field equations has always been present in the mind of phy
sicists. It is almost impossiblé to mention all references to
earlier works on the subject, but we would like to point out
that a Lagrangian treatment was already.present. in .Courant-Hilbert's
.book[:l], and the classical retarded Green function was cons-
tructed in reference EE] . |

Nowadays the subject is adquiring increasing importance .due
to the consideration of gravity theories with Lagrangian con-
taining terms guadratic in the curvature-tenso:l:3]. Further-

more, supersymmetry in higher dimensions leads to higher order
equations, so that dimensionality oflspace-time could be re-
lated to the order of the field equations E4] |:5:] . Also in this
context;it:might turn out to be impossible to fgetr complete
conformal invariance with fields obbeying only second order
wave equations Ced .

It seems then convenient to attack the problem with cano-
nical methods, trying to understand and overcome, if possible,
the difficulties one encounters E?] .

It is for these reasons that: we here develope a
general formalism for higher order equations startihg from a
Lagrangian and building up from it, the cancnical tensors. In
this respect we don't pretend to be fully original, but we
rather try to systematize in an easy way, the procedures that

can be followed for the development of the theory.
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For an adternative, more mathematical, viewpoint see 're—
ference [(8]-

We should alsc mention that it is possible to:follow Schwinger's
Action integral methods[:gj the cancnical tensors coinciding,
up to divergences, with those obﬁained here. The equations of
motion are, of.dourse, the same. |

Lastly we would like to6 point dut the general appearance
of negative energy states, which should be related to an in-
definite metric in the "Hilbert space" of states, for whose
treatment several references can be given (see for eémp&eljﬁh.

It should be pointed out also that the whole atittude and
philosophy regarding the usual S-matrix problem . :shduld be
changed in theories of higher derivatives. This is one of the
main problems which has to be clarified in the near future if
one intends to go ahead with higher order equations. We hﬁxndl

to treat this problem in a forthcomming paper.

2 CANONICAL TENSORS

We start with a Lagrangian function of a scalar field ¢

and of its first m derivatives, in an n-dimensional space—time.

b = Hove,...0%0) (2.1)

The principle of least action A, allows us to write

A= I:dnx b, (2.2)
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=f a®xs > = 0 (2.3)
__ ads o : 2> ra
. oh = s¢ +—3§% 83,0 + .33 o a(aal...aam¢) (2.4)

After integrating by parts the variation of the derivatives

of the field ¢,(2.3) and {(2.4) lead: to the following Euler

equation:

o aga - . ajé 3o _
- 3 + a a T e 13' -0.3 T -\—0

1]

(2.5)

Similarly, we can deduce the generalized N8ther theorem.
3 3 | \
= 9 ‘55&—-—- 9 Fr% + ... )6¢ +
@ {( a? B 99,98
(—?‘r‘aa )63837¢ + } (2.6)

a B Y

In particular we construct the energy-momentum tensor HV

by considering inifinitesimal translation:

sxM.

! adi= 3 doet ; 8p = 3 9et

83 9 Buaadje“ ; ... etc. (2.7)

Replacing (2.7) in (2.6) we get:
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3 W = g (2.8))

where:

T"”“=(§§dﬁ7$ 3‘5?%*33 3°E’ ) e +

a

(o,

3d5 H _ay .
(W = saswe ) 333Y3 ¢ + e - n % (2.9)

+ oeeen ) 8,070 +
uB'?; )B

This tensor is not necessarily symmetric but it can be sym

metrized following Belinfantels proce-:ikure[]‘]':| . Anyway, as the

symmetry is broken by divergence terms, the total energy-momentum vec
tor is well defined by (2.9).

pH = j atx 1M - (2.10)

When ¢ is complex arnd the Lagrangian is phase-invariant,.one is

"led from (2.6) to the conserved current: (8¢ =ie¢ ; S¢* =—-iecop?*)
(a£~ a;;a +) d +
a B

-3 + e 3'¢+...-C-.C
33a38 Y 333 B y B

(2.11)
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3 FUNCTIONS OF ITERATED D'ALEMBERTIAN
We shall discuss special case in which the . Lagrangian

is a function of the derivatives of ¢, only .through the in-

variant D'Alembertian operator:

!

af

We define
2% = O%s (499 = ¢ (3.2)
J5==43(¢(‘)) (s = 0,1,...M)

The principle of least action now leads (c¢f. (2.4),(2.5),

to the Euler equation:

3b 25 .. 3b _

ar:s
s 3
1ot 2% -0 (3.3)
(o0 550

Similarly, we have the N8ther theorem:

M .
_ z 9, (e) - 2 .
b=, 3 {D“ TenTy M -t iz so¢%)

s,t=0
(3.4)
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(Compare with (2.6}).

From (3.4) we deduce, using (2.7), the energy-momentum

tensor
T OH %l s 2 & 3“3“4:“) -3%Qs 32 B“qb(m) ._ngu‘g
PR P T VR (s 4501 |

(3.5)

{Compare with (2.9})).
This tensor can again be symmetrized following Ref. [11].

It is easily seen that

apT”" =0 (3.6)

The conserved current takes now the form

¥ g R
j¥ = ie{ 1 (I:ls jg%ﬁ)'\ 3‘-’¢(t-) -4 % _(m 2:& ¢(‘t‘) -ch

'-'S., t=0 _
' (3.7)

where ch means hermitian conjugate

4 EXAMPLES

a) Let us begin with the simple example of the usual Klein-Gor
don equation, treated from the point of view of a higher order

Lagrangian.

o= -2 e*0e - w2 - 3 0 Do (4.1)
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from which
of, _ 1 oo _ _ 1 _
5% = - p?¢p* - EEM*:W =-3 $* (4.2)

giving the equations of motion

- pp* _%._D¢* +U.(_ .]2-. ¢*)

1
o]

(4.3)
For the energy-momentum tensor :
™Y = adb a%aV + 3% aua%*_ﬁ?s”&),ji 2V _a“a,[% a_\%'* _-ﬁuv&
26 (D) apl)* 3¢ ap (1)*
== %¢*a“a“¢ + % 3V (4.4)
- 3 09M2V% w1 3MeaVex -
and for the Hamiltonian

o= 100 = - Zekp 4 3 4%6 - 3 08 + F bé

| =

- (—5'5 $*0¢ - 3 606+ - u2¢*¢)=

s

- 3 ORI - 3 4VE + db 4 uters

which leads, up to a diiergence, to

H= |Ve|% + |[§|% + u?|¢|? (4.5)
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The .current (3.7) is here the usual one: j“l ==ig (¢*3”¢,_3“¢*¢,).

b) Another example.

-

d = 1meOg - 3 ute? (4.6)

[ ]

leading to the eq. of motion

e+ 0 0 de: OO0 -u' -0 (4T
and for the energy-momentum tensor

PN C ORI TC S I A 3 ¢ (4.8)

The Hamiltonian is given by:

P TP SXCHCN e

2 (4.9)
Using Fourier development for ¢,
b (x) = f.'ake'“"%m (4.10)
The equation of motion (4.7} implies:
(k* -p*)¢ = 0 (4.11)
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Y - 2 _..2 2 2

Oy = 0 GISLKE =u%) + ¢, (k)8 (k* +p?) (4.12)
And we can see the appearance of two kind of particles. One
"normal" with k? = p?, and another "abnormal", with negative.

mass square: k? = -p?, This second particle is a "-tachyon"E'z:l.

c) Let us consider a slightly more general e;-:amplecn:l
b = 3o+ n2)e(a+nz )o (4.13)

With Euler equations:

Mo 0™ vg ﬁ% = oM 4
o =3 (m+m3) , 8 = mim} (4:14)
(O+m2)Q+m2) o = 0 | (4.15)
From (3.5):
Y = 0 ) 0¥a% - (%6 1) 4ad¥p)a¥s - MV
%= (0o +aers - (@b +abd --b | (4.16)

Taking the Pourier transform of $:

¢ (x) ='I ake tEXg (k) §*(k) = $(-k) (4.17)
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and using equation (4.15):
2 2 R - 2y T —
(—k I+m1)(. k +m2) ¢(k) =0

Which means that:

§00 = ¢, 0 8(k? -m2 ) + ¢, ) 8(k? -m3)
= ¢, G 8(k2 -ul) + ¢, (k) (k2 -w3)
S{k +w,)+8(k _=w,) 6k 4w, ) +S{k_-w,)
_ o 1 o 1 o 2 o T2
= ¢, (k) Zoy +¢2(k) 2u,
(4.18)
w, = 2+m;" ;oW = 2+ni;
We have then:
g - -iwlt . > iwlt
¢ (x) = I;ﬁce-1k°r (¢1tr)9—73?— + ¢I(-k)92w1 +
+ -iwst o e%imzt
MRSl roami i A e o
(4.19)

«Phe total Hamiltonian is obtained now, replacing (4.19) in

(4.16) and integrating over the space variables. ‘The result is:

2_.2
mi-m
2

g = 1-2 ]dk(q:’l*cpl - 0%0,) (4.20)

Note the difference in sign between the contributicns of

the partial fields ¢, and ¢2to the total energy. This is a
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general feature of higher order equations (see for example
Ref. [[7]). The quantization can be carried through from (4.20) by

imposing Heinsenmberg equations of.motion:
| E{ . ¢(x)] = - 14(x) (4.21)
Implying for {(4.19)
Ei ,¢1('12)] = -¢,0, (K); Ei .. ¢2(K>] = = w9, (k) (4:22)

These commutation relations together with (4.20) give:

\
. 207 .
Ebl('lz),tb;(k'):' = —2— s(k-k")
m2 ~m2 .
1 2 i _
) (4.23)
o> o 2“2 - =
E:Z(k),cp;(k')] = -~ —2— s(k-k")
2 _..2
ml m2 y,

With a significative difference in sign,-One of the partial
fields gives an indefinite metric to the Hilbert space of par-
ticle states. (See for example Ref, [:10]).

In view of the relations {(4.23), we can redefine thk fields
¢, and ¢, in such away that (we take mi > mg) :

..._............-'2wi KRR (4.24)

Thus we get:

H = I dk (0, ¢3¢, = w,630,) (4.25)
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and

E:lci),¢;.'(1?>}=a(i-i') : Ezciy,q;;(i')}-a(i-i') (4.26)

5 MANY MASSIVE STATES

Just to establish the pattern we will first consider the

following equation of motion:

.2 )f 2 2 2 =
(CI -Hn_,l-)(l:l +m2) ( O my )(D+m4) $ =0 (5.1)
which can be written as:
" 3 2 - -
(D_=+a3D +a,{d -_+-a1D+ ao) $ =0 (5.2)
where
§ 2 Z 2_ 2 z 2,2 2
a, = . m: ; a, = m:mi ; a, = msmsm
3 ;=1 1 2 i%3 i3 1 igjék T3 k
i#k
— 2.2 2.2
a, = mym,mm, (5.3)

The Lagrangian is:

Jo - 30°0%0 +32,000% +32,0000¢+3 2,606 +32 09 (5.0
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_%%_ a b +ha s aa%:l, = La g+ 1la 4@
ié% AR N (5.5)

o

From (3.5), the Hamiltonian density is seen to be:

aci% o a& aJB
. a:.f; PIES Y J{gy SO RSN (5.6)

Using (5.5) and the equation of motion (5.2), we get:

o = '-(--i a +% a, )¢$ +(éa°l+ %'al)&b&i

0O o
(090 43 a8 ) 3D S (59 4L a3 W) 4O b
Z 93
_ (5.7)
For the Fourier transform of the field, we write:
¢ (x} =I dke 1kxtt(k) ; 5*(}:) = 5(—k) (5.8)
§0) = o, (k)G(kz—mi) + ¢2(kra(k2-m;;) + ¢3(k)6(k2-m;)+
+ ¢, 0 §(k2em? ) (5.9)
Then, as in {(4.18), (4.19) we'get:
.i"* . > N :
¢ (x) =Idke_1 ' )j }-—-(q: (K)e + ¢;(-k)e“"jt) (5.10)
. _ J-k
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From (5.7) and (5.10),. the total Hamiltonian can be <om-
puted:

H=3 I ax{ (n3-n2)(m3-n})(m}-n3) og0; +{mi-n3){m3-m3)(m}-m3 ez,

22 2_m2 2_..2 * 2 2 2 2 2 2 *
+(ng-n3 )(m3-n3) (mf-m3) 03¢ + (nf-mf)(wi-ni)(m3-n} ) ¢4¢4} (5.11)
Assuming my <mj <m} <m;, we see that the coefficients Jf-
* * i34 : i - : * *
¢1 1 and ¢3¢3 are possitives, while those of_¢2¢2 and ¢4¢4 are
negative (compare with [_13] and Appendix C of reference [ 3]).
Now that the pattern is clearly established, we can .gene-

ralize the results to. any number of massive states.

The equation of motion is:

M
i ([j+mi)¢ =0 (5.12)
i=1
Or egquivalently
H - M X .
1 oagles ] “ajd(-") =0 (5.13)
j=0 j=0
with
M
a, =1 3 a, ;=1 m ; a _,= ]'mm
i=1 jék
veved, o =2'm? ..m? ..., = T m? (5.14)

In (5.14) the symbol }'mesans that all the indices are dif

ferent.
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The Lagrangian is

6 5 ael) (5.15)

[Tl
na -

=10 '%1(&%2) ¢
ja

%%;= a b + % 1 a0t | _3%17 = % a;é 3 #0)  (5.16)

[
1
-
—
-
Q2
-
| *]

From {3.5) and (5.15), (5.16) we get

3&‘: % a:s+|:-|-1 (¢(8)§(t) - &’(S)d’(t) )-CE' (5.17)

st

The Fourier development of ¢{x) leads to the ' representa-

tion:
ik ﬂ- 1 -iwst iw: t
¢ (x) =I ake™*. I° i‘i.“(“’j (kle *¥it + ¢§.(-—k)e1“’j- )(5.18)

j=1 J

where

Of couuse

s ® (x) =0O% ) =

2w,

! 2

... M {(-m? . i

J'dkelkriz ( ]) (¢j (k)e-lmj + ¢3¢(—k)elmjt) (5.19)
i=1 J

From which, (5.17) takes the form:
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1 ]- 2.2
H==3{ak}] T (mZ-m?)e¥*s.
2 F g#j % J) 11
Taking mlz_ <m?<... <'m§, the sign of the

014, is seen to be (-1)37*L,

Heisenberg equation {(4.21} implies

Which, together with (5.20) gives:
[& k), ¢*(k):l —l 5 § (k-k").

where

= |0 (mZ-m?) |
24 ] S

LJ

and

S, = sign of I m,-
J n L] ( mJ)

Redefining now the operators ¢j:

C. . .
1 4. (k) —= ¢, ()
o, ] 1

J

(5.20)

coefficient of

(5.21)

(5.22)

(5.23)

(5.24)

We finally obtain the commutation relations:

e Far | _ > >
[0, s0p ] = 5.8, 48 k)

(5.25)
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and the hamiltonlan:

= : ¥,
H Idk § sJ.:chpJ

H = Idk:}: (-1)d*Lgxg (5.26)
j 1]

6 PROPAGATORS

Looking at (5.12}, we see that the propagator should, at

least formally, be given by:

A{x) = F(——= (6.1)
‘M (-p2+m?)
j=1 !

Where F means Fourier transform.

Of course, the right hand side of (6.1) is not well defined,
as it has poles at each mi, 80 a prescription must be given, for the
effective calculation of F. Thisprescription is equivalent to
the choice of boundary conditions. The simplest way to express
quantum causality is. by analytic continuation ‘in  the coef-

fictents of the metric [[14], going from euclidean to  hyper-
bolic cne,.

Explicitly, one starts from an euclidean space:

Pz =-;-pi + p; + p; + azpz
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In this way we get analytic functions.(distributions) of a,
which are continued to a = i +¢€, generating the ‘well
known "ie" (See reference | _15]).

Formula (6.1) will be well defined by the : préscription

p2 > p2 + Ie.

Alternatively we can take the usualidefinition:
A (x) =<0|:T¢ ()¢ (0) |0 2 (6.2)
Defining now the partial fields:
w0 = [axSm (¢ 00e™™45" + ot (-k) e195¢) (6.3)
¢j X) = _763- j 3 J .
with
. _
¢lx) = ] ¢:(x) - (6.4)
j=1 7 |

And using the commutation relations (5.22) we arrive at:

b, (x) = § <0 To (x4 {0) {o>
8. 4y |
B x) = ] =L &7 (x) (6.5)
i=1 ¢?%

Where ﬂéj)(x) is the usual Feynman propagator for a par-
ticle with mass mj.

Taking the Fourier transform of (6.5}, we get:

M sl l
. p) = ] L ——— (6.6)
. = C% :
]
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Or, taking into account (5.23):

_ 1l 1
c . 2 2 2 2
1 # (m;~m?¢ m:=-p“-i¢
Which is nothing but
& (p) = {6.8)
¢ II m?2 -p -io)
j=1

In coimmidence with (6.1) except taht the prescription "ip"
is incorporated in (6.8).

Note that the rule p? + p? + lo, is equivalent to the usual
one m* + m* - io, for propagators of the form (6.1). However
this is not true in general. Take for example equation (4.7)

whose formal Green function is:

A=F hl _ =F = z{ 1
p"~ut p=p’ pP+u
A=t gl -1l F 1 (6.9)
2u2 pz_uz 2u2 pz%uz

It is ewident that for the second Fourier transform in (6.9)

the prescriptions do not coincide.



CBPF~NF-037/86

—20—
BIBLIOGRAPHY

E13 R. Courant, D. Hilbert, Methods of Math. Physics. vol. .II
Interscience Publishers. N. York and London 1962.
[[2] surya Prakash: Proc. Indian Acad. Sc¢. (1958) 240,
3] see for example N.H. Barth, S.M. Christensen Phys. Rev. D28-(1983) 1876
{_4] R. Delbourgo, V.B. Prasad, J. Phys. Gl, (1975) 377
[5] c¢.G. Bollini, J.J. Giambiagi. Phys. Rev. D 32 (1985) 3316
[6] s. Fubini: Private communication. | |
11?]'5. W. Hawking: Preprint.Univ. of Cambridge. Depart. of
App. Math. and Th. Phys. Sept. (1985).
[8] v. aldaya, J. Azcirraga: J. Phys. A 13 (1981) 2545
T. Kimura: Lett. Nuovo Cim. 5 (1972) 81.
P.R. Rodrigues: J. Math. Phys.18 (1977) 1720.
P.R. Rodrigues: "Mecanica em Fibrados doé Jatos de .Ordem
Superior". Publ. Depto.de Geom. y Topol €1 (1984). Univ.
de santiago de Compostela. _
[[9] a.o. Barut, G.H. Mullen: Annals of Phys. 20 {(1962) 203
[10] K.L. Nagy: Nuovo Cim. Suppl, 17 (1960) 92
[11] F.J. Belinfante: Physica & (1939) 887, Physica 7 (1940)
3051
[12] J. DHar, E.C.G. Sudarshan: Quantum Field Theory of Inter
acting Tachyons. Phys. Rev., 174 N? 5 October (1968)
[C13] A. Pais. G.E. Uhlenbeck: Phys. Rev. 79 (1950) 145
[14] 1.M. Guelfand, G.E. Chilov: "Les Distributions" Dundd-Pa
ris. - 1962 (ch. 2.4 p 269 and Ch. 28.p.281)
[%s] c.G. Bollini, J.J. Giambiagi, N. Cimento 39, (1965), 1146

Journal of Math. Phys. Vol. 15 ne 1 (1974).



