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Abstract

A fundamental prebiotic stage of the origin of life is the forma-
tion, from a random assembly of oligomers, of information-containing
self-replicating polymers. By adopting a growth mechanism {(already used
by Anderson and others) essentially based in the complementarity of the
Crick and Watson base-pairs, we show that this stage may have occurred
as a critical phenomenon. Within a simple real-space renormalization
group framework we calculate the relevant critical lines, which are
different for different sequences of base-pairs. The picture incorpora-
tes in a natural way Darwinian-like eveolution, is consistent with
reasonable nucleotide ratiocs (A+T)/{C+G), and suggests that polymers
like ADN double~chains are more primitive than proteins.

Key-words: Biogenesis; Critical Phenomena; Renormalization group;
Biopolymers.
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1. Intreoduction

Life seems to have started on Earth about 3.8x10? years ago. The

Earth itself was formed sbout 5x10% years ago. Consequently, if we

assume that 1life in our planet started spontanecusly, there was a
period of approximately 1.2x10% years during which a complex set of
steps were overcome in order to arrive up to the primitive biological
systems. If life did not start spontaneously on Earth, but rather it
came from elsewhere, then in that other place (or those other places)
of the Universe a similar set of steps has presumably occured. Among
the wvarious prebiotic stages which probably occured during the
transition from inanimate to living matter, one of great importance no
doubt is the growth of codified self-replicating polymers starting from
a random assembly of oligomers (dimers, trimers, etc). This is an
important 1link of the chain which joins Organic Chemistry to Biology,
and its study constitutes the central scope of the present work. This
step remains, in spite of its obviocus importance, insufficiently
understood. This is due in part to the fact that the amount of related
experimental work has not yet achieved the point where an enlightening
and comprehensive view would be possible. This situation ig, in some

1,2

sense, 1in contrast with the present knowledge[ ] of a more primitive
step, namely the formation of nucleotides, animoacids, etc, starting
from H,0, methane, etc (the transition from Inorganic to Organic

Chemistry, generally speaking); indeed, this step is now considered to
be based on scientifically reliable grounds through the picture of
viclent non-equilibrium phenomena {electrical discharges, light and
heat flashes, etc) occuring in relatively simple atmosphere.

The growth of codified self-replicating macromolecules (DNA- or
RNA-like) has recently attracted quite intensive theoretical

[3-10]

attention within thermodynamic and/or statistical mechanics
frameworks. The basic growth mechanism is assumed to be autocatalysis

[11]

relying on a Crick and Watson-like complementarity , Aand T as well
as C and G thus cOﬁstituting base-pairs. This is a convenient place for
making clear that, although we shall use along the present work the
notation A-T and C-G, we do not necessarily refer to the well known
nucleotides (adenine, thymine, cytosine and guanine); the notation

might as well refer to their precursors; even more, if the basic
2,12-16 .
macromolecule is to be a RNA-like one[ ]. rather than a DNA-like

one, the notation A-T would then refer to the A-U pair.

[17] . [18]
Other growth mechanisms, using clay . protein and
[19]

animoacid pairing as basic ingredients, have been proposed.
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However, autocatalysis based on A-T, C-G pairings i1s very
[2,6,8-10,12-16]

appealing » @and this is the viewpoint we adopt in the

present work.

We have developed since 1983 a thermal equilibrium critical
phenomenon picture for understanding the growth of codified

20
self-replicating polymers. QCur first approach[ ] assumed a single
base~pair; it provided polymeric growth consistent with diversity , but

with no seleetion in it. Cur second approach[21] generalized the first
one in the sense that the fugacity K,y of the A-T hydrogen bridge might
be different from the fugacity K.; of the C-G hydrogen bridge; it
showed that if two different base-pairs are assumed in the
autocatalysis, both diversity and selection become possible, thus
satisfying in a natural way the basic requirements for Darwinian
evolution. The importance of having Jour, and not two, different
nonomers (capable consequently of forming tww, and not one,

10
complementary pairs) has also been emphasized by Anderson[ ]

Our critical phenomenon theoretical picture ig developed within
22,2
the renormalization group (RG) framework[ 3]. more specifically

within a real space version of it, similar to those available in the
24-26
llterature[ ] for polymer problems. A comprehensive and pedagogical
21
review of our approach[ ] of the above discussed prebiotic stage

constitutes the central purpose of the present talk.

2, Model, formalism and results

The monomers A, T, € and G can form double strings through
intrachain covalent bonds {noted—in the illustration which follows)
and interchain (hydrogen-like) bridges (noted...) as illustrated below:

A G—I-A c-¢
r-C-A-T-G-C W

Let K,, and K.; be the fugacities (or bonding constants) respectively
associated with the Interchain A-T and C-G bridges (Kyp» Keg > 0} K7
and K., depend, in a complex unknown manner, on all the thermal

equilibrium (or almost equilibrium) external parameters (temperature,
pressure, humidity, various salts concentrations, etc} which
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characterize the primordial soup, assumed to contain arbitrary amounts
of randomly codified oligomers (dimers, trimers, etc) like that of

scheme (1), We further assume that oligomers can grow through the
autocatalytic process illustrated below:

(A= 6-T-R) +(C-6)+ (A-T-G~-C) &>
C-

(A-C-T-R)(G-€) (A-G-T-A-¢-¢)
A-T-6-C) % (A-T-6-&) +°

(A-G-T-A-C-6) + (A-T-6~C) 2

Notice that we have obtained, as a final product, the hexamer of schene
(1), whereas at the initial stage, we had nothing longer than
tetramers. In the present illustration, (A-G-T-A) and {C-G) play the
role of growing fragments, and (A-T-G-C) plays the role of catalysing
Jragment. We are assuming that the intrachain condensation
{characterized in our illustration by the fugacity Juye of the A-C

covalent bond} between the two growing fragments is greatly favoured
{(J,c 1) 1in the presence of the catalysing fragment bonded, to both
growing fragments, through the interchain bridges.

In order to better understand the RG framework within which we
shall perform calculations, let us first discuss the single base-pair
particular case (KAT = K.; = K; both A and C denoted by A; both T and G
denoted by B}. We perform the configurational analysis associated with
the growth of a small oligomer {(e.g., & dimer in Figure 1{a), where
procedure I has been illustrated), according to the following rules:
(i} we consider all the growth~active configurations of all the
catalysing fragments whose size is not longer than twice the growing
fragment under consideration (we want to retain only the most probable
mechanisms, and the probability of occurrence of catalysing fragments
much longer than the growing fragment is rather poor); (ii) the
"weight" equals 1 when the catalysing fragment is unambiguously
associated with t?e growing fragment under consideration, equals % when
it can equally well be associated with the other growing fragment, and
equals O (and is therefore absent from the figure) when it is
unambiguously associated with the other fragment (to be more precise,
when the number of non-connected residues at any given end of the
catalysing fragment exceeds the number of its residues actually
connected to the growing fragment under consideration); (iii) the
number of growth-active ends (1 or 2} of the catalysing fragment can be
disgarded {procedure I) or taken into account (procedure II) by
introducing & "growth efficiency" which equals the number of
growth-active ends; (iv) the interchain bonds are assumed independent
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(hence the effective fugacity of a given set of simultaneous bonds is
just the product of the corresponding fugacities); (v) multiple
catalysing processes {involving more than one catalysing fragment) or
similar complex processes are neglected because of a presumably low
probability of occurrence. These set of rules obviously involve a
certain degree of arbitrariness; however we believe that any other

"reasonable"” set of rules would lead to results not essentially
different from those we shall present.

Figure 1(a) yields, through the sum of (weight) x (growing
efficiency) x (fugacity), the following effective fugacity:

R:_ (K); K+ A K?' {procedure I} (3)

Analogously we obtain, within procedure II1,

R]: LK)': K +5-Kl (procedure II) (3")

The subscripts 2 stand for dimer. We now repeat the configurational
analysis for the growth of a longer oligomer (e.g., a trimer in Fig.

1{b}, where procedure I has been illustrated). We obtain the following
effective fugacity:

R3K)= Ke2K2+ R K3 (procedure 1) "
and also
RTK) = K +3KL 4 41K> (procedure 11) )

We can now write down the RG recursive equation, namely
‘ R, .
Rf’:_ (X) = RS (K) (%= T orII) (5)

Both recurrences admit the trivial (stable} fixed points K = 0
(corresponding to lack of infinite growth, and characterizing the
Jinite growth (FG) phase) and K = e {characterizing the {nfinite growth
(IG) phase). They also admit a critical {unstable) fixed point, namely

K* = 1/8 = 0.125 for procedure I, and K* = 2/11 =~ 0.18 for procedure
IT. The present calculation provides further information: while

approaching the critical wvalue K°, the mean length E of the growing

fragment diverges as E a:(K'-K)'v, where the critical exponent v is
given (within the present RG approximation) by
0 Imib/b) N In(b/b) (6)

dk'\ ¢ T dR.(k)/dK
.RM(J'E)K* fm[day;\z)/dlﬁ K*
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where b{b') is the size of the original {renormalized) oligomer under
analysis (in our present example, b = 3 for the trimer and b' = 2 for
the dimer)} and R, (K) (Rb.(K')) the corresponding effective fugacity. We
obtain v ~ 7.0 for procedure I, and v =~ 3.3 for procedure II. The
smaller and more satisfactory (because more consistent with related
calculations in polymer rhysics} value of v obtained through procedure
II, 18 to be attributed to the higher realism introduced by the growth
efficiency. Anyhow it is completely out of the scope of the present
very crude approximations to obtain reliable numbers for K or v: our
arguments concern only the qualitative facts of the picture.

Summarizing, we have seen that the autocatalytic mechanism might
lead, when approaching a critical value for the interchain fugacity, to
the growth of codified self-replicating polymers. This already seems to
us a very suggestive conclusion. However, if a single base-pair is
assumed, all codes grow, and all do so at the same value of K: this is
fine regarding diversity, but, from the biological standpoint,
completely unsatisfactory in what concerns selection! We shall next see
that the (realistic) assumptions of two (or more) different base-pairs,
will lead to a remarkable improvement.

The parameter space of our problem will now be g two-dimensional
one, namely determined by K,r and K,. (all intrachain fugacities are
assumed infinite at this level of approximation}. The RG flow will now

be determined by (explicit or implicit) recursive relations of the
following type:

Kar = &yﬁ (Kar, Kce) (7.8)

Kee = Jur, o (Kee, Kar) o

where f . . and By o 8re functions which will in general depend on
the respective sizes b and b' of the original and renormalized
oligomers we haver chosen to work with, as well as on the particular
code which {8 growing (and which is denoted by the index o). Examples
of such codes are the following: co Ky oKy i KygKypo oo (0= 1),
-+ KegKeeKegKege o+ (0= 2), e Ko KooKy rKege oo {0 = 3),

oo KypKupKeoKo gKarKa 1Ko gKeg - -+ (0 = 4}, oo Ry r Ky 1Ko gKaoKupKeg o+ (0 = 5).
The single base-pair particular case can be obtained through three
different limits, namely: (i) Kyr = K.g = K and arbitrary o, therefore
fbb.’c(K.K) = gbb.',(K.K) = F .y (K)s  (ii) K,r = K, arbitrary K.,, and
o = 1, therefore fopr, 1 (KiKeg) 2 Fpo (K} (d1d) K.q = K, arbitrary K,.,
and o = 2, therefore &y, 2 (K.K,;) = F,,.(K). Furthermore, for codes
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which are invariant through Kir ® K.s permutation (e.g., o = 3,4, but

not a =5} the f‘ollowing property must be satisfied:
f‘bb._c(X.Y) = By 'd{-X.Y) for arbitrary (X,Y). Several of the above
properties can be verified on the following examples,

1st example: growth of the o KyrKegKarKeg e« - sequence (o = 3). The RG
equations are given by

S N
RI::': (Kar,Kce Kat) KCE') = Rq (Km‘, K('G"KAT’ Kee) )

and
T Ty |
Qs KK(L Kat Kee, K,{T)--Qq (Ka, Kar Kee, Km‘) "
where _ - .
g? \K&T; K%IKA‘T/ KC&) = Kat + dKarKce + 9 KarKee
r K;:T K(}e + 24 Kﬁ-'l} KC.; (10)
and

— 1
i ;. .
Rq (Kﬁ.‘n Ku’u-/ K&T}KGG) = Kh‘T‘ T 3 K&TKCG 5 K&T Kee

: T oL 3L 3,3
+ F Kny Kee + 9 Kat Kc,(.. + 1 KAr Kee
. y - -~ . "

13 K:T Ko +13 K;‘T Ké¢+3°l K&ar Kce (11)

See in Figure 2 the associated RG flow, which determines the

corresponding critical line, and also exhibits that the two base-pairs
case belongs to the same university class as the single base-pair case.

2nd  example: growth of the ...K,;K, K.K. K, K, K:.K.q... Sequence
(6 = 4). The RG equations are given by

ler (K&'T ;K&'f ch:s-/ Kci—) = Q: \KATI Ka, Kee, K“’) (12)
and . I

Rg:(l(q', Xee Kay ,K&'T) = Rq (Ka,, Kee, KM;,KAT) (13)
wt;rg LK&T,I(&T, Kee, Kee) = Kar + %_ Knr + }2- KatKee + i—_ Knrkee

+ 3 KnrKok +7 KaTKek + 2 Ka Kee ()

and

, 3,1
ﬂf\[ (K&T}K&TJ Kw, ch-) = Kar + T Knv + > Kat¥ec

t T KT Kee + 5 KaTKee 17 Kk Kek
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) .. 3 4 3
e + K e+ BT

, ~u A gy Yk
+ 2Kt ke + 18 Karkeg + 39 Ky Kee -

The corresponding RG flow is similar to that presented in Figure 2.

Equation (10) (Eq. (14)) has been established by making the
configurational analysis associated with the sequence

"°KaTKxx-KYY'KCGKATKxx'KYY'KCG'" (see Figure 3), calculating the
effective fugacity Rél(Knr'Kxx'-KYY'-Kce)' and then taking XX' = CG and

Y¥' = AT (XX' = AT and YY' = CG). We have proceeded analogously to
obtain equations (11) and (15).

We have indicated in Figure 4 the critical lines corresponding to
various typical sequences. We notice an important improvement with
respect to the one base-pair model: the picture presents now both
diversity and selection! In other words, a microscopic basis for
Darwinian evolution is now achieved. However, and in spite of this
interesting achievement, the model is not yet free from two important
limitations: (i) if we assume a reasonable time evolution of Kyr and
K. {see Figure 4), the most privileged codes are those presenting
either very low or very high (A+T)/(C+G) ratios, a fact which is not
easily consistent with the values (% S(A+T)/(C+G) £ 2;: see [11])
associated with modern 1living systems (at least in the biosphere};
(ii) the critical line is one and the same for all sequences of
nucleotides which correspond to a single sequence of honds (e.g.,
«+.ACACAC..., ...AGAGAG..., ...ACTGTCTG..., etc, correspond to the
sequence ...K, ,K..K,.K.-...}, a fact which has no biochemical support.
Both 1limitations disappear by considering the different intrachsain
fugacities (they are, within a nearest-neighbor picture, 10 in number,
and will be denoted by JM.J“,Jﬁc.Jm.JTT.JTC.JTG.JCC.JCG and J,.). In
fact, our approach thus far corresponds to assign to these 10 constants
the value infinity. It is intuitive that finite values for these
fugacities will wake it more difficult to attain the point of infinite
polymeric growth. We have indicated in Figure 5 the expected critical
line assuming say that all the J's are equal among them (and equal to
J), and that K,, = K.4 = K; note that X approaches K' when J diverges.
The fact that the actual J's are finfte and different from one another,
will make all the critical lines (of Figure 4) to shift towards higher
values of K,, and K,.. This shift is in general different for differing

sequences of nucleotides, even {f they preserve the same sequence of
K,r's and K,;'s. The result is indicated in Figure 6, by arbitrarily

choosing Jeo ® Jeg Jog € Jaa & Jap 2 dpr €T & Jpe C Jpe & T € o0,
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We have not carried on actusl RG calculations corresponding to finite
J's . They are in principle tractable, though burdensome because of the
large number of RG parameters. It is clear, in any case, that this is a
realistic path for overcoming the two limitations mentioned previously.

Let us add that if we were to pursue calculations along this
line, a further realistie element would have to be included in the
model, namely a certain amount of cross-links which do exist between
different points of the (folded) double-chain., The effect of these
cross-links would presumably be {as observed, for ingtance, in
hemoproteins) to make the {intrinsic) fractal dimensionality of the
macromolecule higher than one. This would be necessary for having phase

transitions at finite (not vanishing) temperatures in the presence of
finite (not infinite) J's.

3. Conclusions

Within a critical phenomena approach we have studied the
prebiotic stage concerning the growth of codified self-replicating
polymers (DNA or RNA-like) starting from small oligomers (dimers,
trimers, etc). The growth mechanism that has been adopted essentially
is autocatalysis through Crick and Watson like pair complementarity.
The picture which emerges can be synthetized as follows:

(1) A single base-pair { Kyp = Kog) yields critical growth
consistent with diversf{ty but not with selection;

(ii) Two (or more) base-pairs (Kyp ® Kop) yield polymeric growth
consistent with bDoth diversity and selection; these fundamental
ingredients naturally come into the theory, thus providing a
microscopic basis for Darwinian evolution; life would have then
appeared from a certain amount of self-replicating codes, and not from
a single one (those different codes would have grown at different,
though close, moments of the Earth evolution):

iii} The role played by finite values for the interchain covalent
fugacities (Jaa-Jac' etc) is to make possible realistic values for the
nucleotide ratio (A+T)/{C+G) {roughly between % and 2);

(iv}) In the old querelle “"which came first: nucleic acids or

proteins?”, our picture suggests a more primitive role for the nucleic
acids;

(v) The polymeric growth we are concerned with can be thought as
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essentially being a thermal equilibrium stage (no assumptiong of
processes far from equilibrium are needed).

As a final remark we might add that, if analogies with spin %
magnetic systems are to be done for the prebiotic stage under study,
the roughest "reasonable" model seems to be that in which the binary

code (S = %)} refers to the base-patrs {A-T or C-G) and not to the
nucleotides (purine or pirimidine).

One of us (C.T.) acknowledges hogpitality received at the Service

de Physique Théorique, CEN-Saclay, where the present review was
written.
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CAPTION FOR FIGURES

Figure 1: Configurational analysis, within procedure I, of the

catalysing fragments corresponding to the growth of a dimer {a) and of
a trimer (b).

Figure 2: Critical 1line (full 1line) in the (K,7,Koq) fugacity space,
geparating the finite growth (FG) phase from the infinite growth (IG)
one of the sequence oo oKy 2K oKy 7Koo - - Arrows and dashed lines indicate
RG flow; the central dot indicates the single base-pair critical fixed

point (responsible for the universality class of the whole critical
line}.

Figure 3: Configurational analysis, within both procedures I and II, of
the catalysing fragments corresponding to the growth of a pentamer
(sequence ...K, K,y . Kyy KooKynKyy Kyy Kogeoo)-

Figure Y4: Critical 1ines (in the (K,p:K;g) fugacity space)
corresponding to the growth of selected sequences {the dashed line is
indicative); FG (IG) denotes the finite {(infinite) growth phase. The
point at K,, = K.; = K° reproduces the fixed point of Figure 2; the
dotted line is a symmetry axis of some of the sequences {e.g.,
oo KyrKegKarKeg---  and o oKy r Ky o Ko Ko oKy Ky r Ko oK .). The arrows

AT CG Cg"*
indicate a plaugible (slow) time evolution of K,r and K.

Figure 5: Indicative FG-IG critical line (one and the same for al
sequence types)} corresponding to Kye Kcg =K and all J's equal among

them (and equal to J). K refers to the single base-pair critical point
of Figure 2.

Figure 6: Indicaﬂive FG-IG critical lines corresponding to the growth
of different mucleotide gequences (not only different sequences of
interchain links). The dashed line is a symmetry axis of some sequences

(e.g., ...ACAC..., ...AGAG...); the dotted lines indicate the value K'

of all previcus figures. The arrows indicate a plausible (slow) time
evolution of K, and Keg+
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