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Abstract

In this letter we propose a covariant wave equation in the
Polyakov’s Quantum Geometry of Bosonic Strings. Its main feature
are the explicit appearence of a metric dependent term (vanishing
at D=28) due to the conformal anomaly and its reduction to the

Nambu String Wave Equation for D=26, where D is the space-time

dimension.
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1. Introduction

Recently, A.A.Tseytlin ([l]) suggested a new approach to the
covariant formulation of the second-quantized Bose string field
theory based on the Polyakov's quantum geometry.

A basic¢ problem in this secend-quantized formulation
concerns the determination of the wave equation satis%ied by the
string wave functional which affords the conatruction of the
string Feynmann rules and study of the theory ground states.

Qur aim in this letter is to propose a covariant wave
equation for the Polyakov bosonic string (in the cylindrical

conformal gauge) by taking into account in a explicitly analysis

the presence of the conformal anomaly of the theory.

2. The Wave Equation

The basic object in a covariant second quantized string
theory is the quantum string state which ist‘repreéented by a
functional @[C)] = @ [)(M(U') 3 e(_O')—] of a parametrized
contour X’A(G‘) (Oé c,r‘g_( ) and of a one dimensional intrinsic
metric € {F) . The quantum free propagation of a initial string

IN . ouT
state (? for a final state C? is furnished by the

evolution equation ([1]); [6]).

dleT= LA™ 6™, 130"
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where the string propagation Kernel Gs [couT; CIN] can be expres-—

sed as a Polyakov surface sum over cylindrical 2-surface with

zero Euler number, that is

6 ['fou'r} Ci“] = . 2[,‘4] EXp ("’ _To (Sab(ﬁ',:r), )('M(o"g)))
oM = ((""”; c™)

D[M]: [ ‘}%(u“J) o{xﬂ(OHI):]

(2)

The metric { ﬁnb(U]I\ ] on M can be choosen to satisfy the

so called conformal cylindrical gauge

%ab(cr,x) = exp U(o,1) 9,

(3.4)
= Plo,1)y oy
0 é IJ<T ; 0< 0< |
so that
N M M @(e, 0y
C = { XlN('O-) - )( (0-,0))’ eiN(.U') s € l
(3.B)
ouT M M W(e,T)
C - XOUT(U-).: x (G,T); eo‘(';r):e (3.0)

N _
The path measure [l f -]is defined by the covariant

expression.
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) 4
0

We note that the boundary term associated to the initial
string state C!M¥ in the Brink-Di Vecchiu-Howe string covariant
action can be naturally absorved in eq.{(4). Procedure assumed in
the discussion thaf follows.

Let us now present our basic idea to write a covariant
string wave equation for the string state @[C‘"] possessing as
"string green function" the quantum sprface path imtegral given
by eq. (2).

In order to write a wave equation associated to the "Kernel"
eq.{(2), we consider variations on "time direction" I of the CIN¥
end contour in.the above quoted surface path integral.
| It is worth to remark that this procedure to deduce a wave
equation for the "kernel" eq.(2) is similar to that used to write
the Wheeler-De Witt equation in the path intégral formulation 1in
Quantum Gravity (see Ref.[2] - Sec.B).

Since 'I ~variations on string surface are equivalent to

%°°[U]T]variations and these variations should vanish we arrive

at the following identity:
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. | m v M -
0- §§O+< 3’ (X, %m0, X, g om)

+ Lim Exp[ F (% (trn)]>

[=0* S%(M)

where > is the Polyakov quantum surface average defined by

eq.(2), ‘j()( (03) ... (c) X" c) X"- --L ‘3009“{
9 X: ;hl)( ) (U'.S)

is the time component of the (intr1nq1c) string energy-momentunm
tensor. The presence of the term F[ %ab(0‘13)] is due to the
conformal anomaly of the theory ([3], [4}){ In vanishes for D=28

and its general covariant expression is given by ([3], [4])

i

!
Flg.@m)- 2600 liede | drds| (53 R)eo, 3y
| b 3w

K((wx) (7, 3, (0" I))
(/3 R) (¢ T):,-r M, JJGJJI /5 (o1

where K ( (U-\T ) 1 (0.‘1-5 ) J %al,('u IT ) ) denotes the Green
function of the Laplace Beltrami operator associated to the
metric gab( a7 ) (3D).

By writing the relationship eq.(5) in the (cylindrical)

conformal gauge eq. (3-A) and using the result
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l<(1 i ‘3(: 1)-€ e, ‘*‘g ) = “(z—z“)

S‘jw( T) :z’n‘r

([3}), we obtain the following result

Lo, 2
(0-26) { Lim L R(e e n) T M
I-5<3+ SJL{TF QHW

+(7LM-IXMI)>=om

AN

M o(oy= Lim c) X" (0,1)
W I»0*

cal momentum associated to the string vector position )( (v )

ana R ( eu;(v.n) - _ e-w(mﬂ((aI LQ)Qﬁ- (c)wu?)g) (0.7) 2L 1)

is the scalar of curvature associated to the metric (G}I)? € o
b
. o

Here, denotes the canoni-

At this point we propose to enforce eq.(7) as an operator
identity on the state space of strings functionals @[C].

In the operator quantization framework we have to impose
covariant commutation relations for the dynamical degrees of
freedom of the dynamical system under study.

For the Polyakov string the dynamical degrees of freedom are

M
the vector position XIN(F) and the intrinsic metri(‘: eiN(U') . So,
in order to write covariant commutation relations one should
consider, besides the wusual canonical string vector position
momentumfrr:‘(w) » @ canonical momentum associated to the é?h,(¢]

variable. A natural candidate for this object is given by the

expression /n.' (r) = Lll‘-" 9 LQ(U. I\ (r41n.

~y I-so
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The covariant commutation relations satisfied by these

dynamical variables are

[7\ (e aut‘”]= g7V L §(e-0)

(8)

In the Schroedinger representation it is easily verified

the following explicit representation for the canonical momenta

{ Mo, @] (r5)

in » (9-4)

In _
~ €. sy e (9-8)

Thus, wusing eq.(9-A) - eq.(9-B) in the relation eq.(7) - we
translate the classical identity eq.(7) into the following

operator identity:
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’ ) 2
j2¢0 L (=, ] + (€. ()
aunw® € C, Jeisn .SQPLw)

+ /“\o:zﬂ eiu(r))
511 \ 2
{ - 41 (o) W
t a in in o l ><'" l 635 [:z;gq),eg"éc}]
€t 41X o) d% (o) |

1
IN e

(10}

= O

The operator equation writen above is our proposed covariant
wave equalion in the quantum geometry of bosonic strings.

By analysing eq.{(10) we can see in a invariant way the
reduction at D=28 to the Nambu string wave equation associated to
the Veneziano dual boscnic model [8] by choosing the string
"proper-time" gauge ei“(ﬂ'\ = constant.

Extension of this study to the important fermionic case
(£7), [8]) will be discussed in other paper.
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