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ABSTRACT

Within a real-space renormalization group (RG) framework, we
study the criticality of the Z{(4) ferromagnet on square lattice.
The phase diagram (exhibiting ferromagnetic, paramagnetic and ne-
matic-like phases) recovers aff the available exacl results, and
possibly is a higy precision one everywhere. In particular we es-
tablish the main asymptotic behaviors {(bifurcation and Igsing re-
gions). In addition te that,we develop an operational procedure
{(Break-collapse method) which considerably simplifies the exact
calculation of arbitrary Z{(4) two~terminal clusters (commonly ap-

pearing in RG approaches).

Key-words: Z(4) model; Phase diagram; Renormalization group; Square
lattice.
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The Z(N) model contains, as particular cases, various impor
tant statistical models (e.g., bond percolation, spin 1/2 1Ising
and Potts models) and is relevant for a large class of physical
problems (e.g., random resistor and magnetic systems, adsorption).
It has attracted, during last years, a certain ammnnxofuch“’al,
mainly in two dimensions, and addressing more -particulariy the
square lattice which, due to its self-duality, turns out to be
relatively simple. The Z{N) model starts being larger than the
N-state Potts model at N=4. The phase diagram of the Z{4) ferro-
magnet in square lattice is known to present three phases, name-
ly the paramagnetic (P;Z(4) symmetry), the nematic-like or inter
mediate (I;Z(2) symmetry) and the ferromagnetic (F; campletely bro-
ken symmetry) onés. The entire phase diagram is constituted by
second or higher order phase transitions..The P-F, I-F and I-P
critical lines join at the 4-state Potts critical point. The P-F
line is entirely determined by duality arguments; furthermore these
arguments biunivocally relate the stilf unknown (as far as we know)
I-F and I-P lines. Herein we calculate these lines by construc-
ting a real-space renormalization-group (RG) based in the. well
known self-dual Wheatstone bridge cluster (Fig. 1).

A convenient form for the Z(4) (symmetric Ashkin-Teller

model) ferromagnet (dimensionless} Hamiltonian is the following[7]:

.. K,-K ccll'r-r -2K,{0.0. T, T 1
.7 <i§j>[1 1 (0304 + T, 75) = 2Ky(0,0. T, T1)] o8

where T is the temperature, <i,j> runs over all first-neighboring

pairs of sites on a square lattice, 0,=%* 1, T, = +1 (vi), Klz 0

and K1+2K230. Let us introduce the operationally convenient var
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iable (vectoxr t&anémiééiuity[?]}.Eiiﬂl,tl,tz,ts) through

£ =t = _2%23_221). — (2.2)
| 1+2 e 1+#4827 L 7%
¢ . 1-2 e—Z(KleEz).+e—4K1 (2.b)
2 1+2 e—2 (K1+2K2) + e—ll»Kl

This vector transmissivity generalizes the scalar one used in the

Ising (reccvered as t2=t%) and in the 4-state Potts (recovered as

[9] +(s)

t =t2) models . The transmissivity t (E(P)) corresponding to

1
a series (parallel) array of two bonds, respectively associated
with E(I) and %(2): is given by[71

tis) = tél) téz) (i=1,2) (series) {3}
and
eP)D _ D (2)D (54 5} (parallel) (4)

1 1 1

where the duaf transmissivity T is given by

l-t,
t? : 2 (5.a)
1+2t1+;2
) .. l_—2t +t
tg z ot 2 (5.b)
-1+2t_.1+t2

Algorithms (3) and (4) enable quick calculation of the transmis-
sivity corresponding to any two-terminal array. fully reducible
in series/parallel sequences; we shall see later on how to deal

with arrays which are not fully reducible,
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To treat Hamiltonian (1} we use the cluster RG transforma-
=
tion indicated in Fig, 1 (with t=t). This choice is known to be

a very convenient one for the square lattice (e.g., random resis

[11]

tor[lol, bond percolation N-state Potts[gl, aniso-

[12]

tropic Heisenberg models). The RG recursive relations are con

structed to preserve the correlation function,jueqexp(-arizﬂﬁg)=

= - ' 1

= 3?1; exp { 3*1234/}:3'1'), where le and aflz% are the Hamil
»

tonians respectively associated with Figs. 1(a) and 1l(b). (afiz

includes an additive constant). We obtain, through a tedious but

straightforward calculation,

2 2 2429 F 21¥F
(2(Letf) el + [200ee ) e]) £+ f4e,001E,

t) = (6)

y LT a2y 29E g 2 y -
[1+t3+2t]] + [4(Letd) E]IE I +e) IE,

[2(t2+t*)T + (B 21T, + [2(t24t¥))1E
e = 2771 271" "1 271 2 (7)
4 & PR IVELT 2 L T
[l+t2+2t1]+[4(1+t2)t1}t1+[2ﬂﬁ+tﬂ]t2

where t, and t, (ta and tb) gre related to K, and K, (Ka angd KE)
through Egs. (2), and where %==€ (it is only for future conven-
ience that we have already indicated the result corresponding to
Fig. 1(b), where t and % are arbitrary transmissivities). Egs.(6)
and (7) fully determine the phase diagram we are looking for,
as well as thermal-type critical exponents.

Before analysing the results, let usg describe a particularly
simple manner (break-colfapse method; BCM) to obtain Egs. (6) and
(7}, and, more generally speaking, the equivalent transmissivity
E associated witq an arbitrary (series/parallel reducible or not,
planar or not) two-terminal graph of Z(4) bonds. & is determined
by Gzt{t(i)}):=N£({€(i)})/0({€(i)}) (£=1,2) where {%(i)} denotes

the set of transmissivities respectively associated with the bonds
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of the graph, and Nt({t(l)}) and D({{(l)}) are multilinean poly-
nomials of the form A+Bt}5)ﬂ;t(3) for an arbitrary j b _pona, a,
B and C depending on the set of transmissivities (noted {t(l)} ¥
of the remaining bonds. The performance of three different opera=-
tions on the j-th bond, namely the “break" (t(J) éj) =0), the
"collapse” (1) - gj) -1) and the "pre-collapse* (t\)-g, i),

completely determine A, B and C. It immediately follows:

Ny (D)) o eIy Wb (@) p e gty
R IS R AT A S IV W TR T I
p({ED )y = (-e{3) pPP (D} 4 £{3)pme (2 DY)
v oe{8) _elB)) phe (D)4 8.b)

where sz,...,Déc

“are the numerators and denominators of the "bro
ken" (bb}, "collapsed" (cc¢) and "pre-collapsed" (bc) graphs. By
recursively using this property and algorithms {(3) and (4) the
problem is easily solved. In other words, the tracing algebra 4is
automatically satisf{ied thmough the (above mentioned) topofogical
operations, Let us illustrate the procedure on graph of Fig.1l(b):
its broken, collapsed and pre-collapsed graphs (operating on the

%-bond) are respectively represented in Figs. 2(a), 2(b)amd 2(c),

and yield

=2
i}

2(1+t3)t} (9.a)

bb 2,45

M
1
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Dbb = l-rt;-th; (9.c)
ce _ ; 2.2 | :

N;© = 4(1+t2) t (9.4)

N;c = 4(£;+2t2ti+t;) (9.e)
D°C = (L+t2) 2+4ULe3)ES # )] (9.£)
be 2,2

NI© o= 2(1st,) ey (9.9)

NPC - 4(t2+t") 9.h
2 = 21 (9-h)

pPc - (L+2) 2 + 4t} (9.1)

Eqs. 9(a)-(f) were obtained through exclusive use of -algorithms
(3) and (4): Eqgs. 9(g)-(i) used also algorithm (8) {(and.the fact
that a graph exclusively made by pre-collapsed bonds is pre-col-
lapsed itself). It can be checked that Egs. (9) replaced into Egs.
(8) recover Egs. (6) and (7), very tedious to establish zthrough
the traditional tracing operations. This type of procedure has
been very useful in a variety of problems (Potts[gl model, resis
tor network[13],directed percolationll&l): it is herein established
for the %Z(4) model (we are presently working in its generalization

for the Z(N) model).
We go now back to the criticality provided by Egs. (6) and

(7) (with'%=€). The present RG shares with the Migdal - Kadanoff-
—like RG of Ref. [6] the fact that it recovers afl the available exaoct
results for the phase diagram of the Z (4) ferromagnet in square lat
tice (see Fig.3), namely: (i) the self-dual line (t2=1—2t1)  part of which
constitutes the P-F critical line; (ii) the location of the Potts

(t1=t2=1/3; P point in Fig. 3), Ising—l,(tl=/E}=/7;1;11pohuﬂ,



CBPF~-NF-033/85

Ising-2 (t,=0, t2=/5;1; I, point) and Ising—3(t1=J§;1, tsl; I,
point) critical points; (iii) the I-F and I-P critical lines are
related through duality (Egs.(5)); (iv) the phase transitions are
21'“1 or higher order ones.Furthermore the present RG provides the follow
ing asymptotic behaviors (possibly excellent for the square lat-

tice):

3 (c=2(3v/2-2)/7=0.64) {10}

tzﬂa(/z-l) - oty

£, v1-d[(/2-1)-t,] - e[ (/2-1)-t,]° (11)
(d=2/(V2-1) = 4.83; e=c/Y2(V2-1)" =15.4)

t,n1-2t f(1/3_t1-)¢ (£2982;6 = £n(27/13)/£n (17/13)= 2.7245)
(12)

in the neighborhood of the I,, I, and B points respectively, With
respect to the thermal critical exponent v, the results are the
following: (i) at all three Ising points, v=£n2/£n(2/2-1)= 1.149
{v(exact)=1); (ii) at the Potts point, v=€n2/8n(27/13)=0.948 (v ex
act)=2/3); {(iii) the I~-F and I-P lines belong to the Ising ‘uni-
versality class (which is known to be correct); (iv) the P-F line

belong to the Ising universality class (which is wrong[lsl

: this
error could possibly disappear in the increasingly large cluster
limit).

Summarizing, the 2%(4) ferromagnet phase diagram obtained
within the present RG approach recovers all (as far as we. know)

the exact results available for the square lattice, and possibly

is an excellent approximation everywhere (in particular, the as-



CBPF~NF-033/85

ymptotic behaviors (10}-~{(12)); the approach is less performant
for the thermal critical exponents. If instead of the square lat
tice, we focuse the hierarchical one generated by transformation
in Fig. 1, then aff the present results are exact. In addition to
that, we have established a new method for calculating arbitrary
two-terminal (and possibly n-terminal) arrays of Z(4) (and pos-
sibly Z(N) within appropriate generalization) bonds. The proce~
dure is operationally quite convenient as the tedious tracing al
gebraic calculations are automatically performed through elemen~
tary topological operations. Consequently RG's based in relative

ly large clusters become tractable.

We acknowledge useful remarks from L.R. da Silva and &A.O.

Caride; one of us tA.M.M.) benefited from a CAPES Fellowship.
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FIGURE CAPTIONS

Fig. 1 - RG clusters. o{e) denotes terminal (internal) node.

Fig. 2 -

Figo 3 -

Broken ((a)), cellapsed {((b)) and pre-~collapsed {{c))
graphs, obtained from that of Fig. 1l(b}, considering re

spectively. 1-:1= t,=0; t,= €,=1 and £,=0,E,=1.

{a) : Phase diagram in the (tl'tz) space. F, I, and P re
spectively, denote the ferromagnetic, intermediate and
paramagnetic phaées. P is the Potts fixed point; Il’ 12
and I3 are the Ising fixed points. W denotes the fully
stable fixed points. The shaded region is non physical.The
t,=t, and t2=ti dashed lines respectively represent Potts
and Ising invariant subspaces.

b) Phase diagram in the (kBT/Jl,l+2J2/J1) space. J.=
=kgT K, i=1,2). The dashed lines are asymptots.
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