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ABSTRACT

We present a review on some modern developments con-
cerning the interaction of gravity with other physical fields.
It is argued that a suitable context for an account of their
dynamical interplay is that of the non-minimal (e.g., counformatl)
coupling of these fields to gravity. Some interesting features
of non-minimal coupling, such as the connection with Weyl-inte-
grable spacetime (WIST) structure, the generation of eternal
Universes, the appearance of a cosmological constant and the
possible induction of repulsive gravity via spontaneous Symmetry
breaking (SSB) mechanisms, are discussed. In particular, we
examine a simple case of strong interacting scalar particles
{such as the well-known elastic reaction nK - 7K), in a curved
background, thereby obtaining the curious result that the actnai,
observed value of the strong coupling constant and the minimum
value allowable, in order to precludg antigravity, are related

by Eddington's number 1039.
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[. INTRODUCTION

Though Einstein's old program towards the unification
of the fundamental forces of Nature has experienced, during the
last years, a remarkable impulse, due mainly to the sucesses
achieved by the so-called gauge theories, nevertheless gravity
still remains peculiarly apart from the other forces. This si-
tuation, it seems, will persist for some time, at least as long
as the metric aspects of spacetime are attached to gravitation
only.

This "state of the art" justifies alternative approaches
that have been attempted by many physicists in the course of the
examination of reciprocal effects in the interaction of gravity
with the other forces, searching to understand how strong, weak
and electromagnetic interactions are affected by gravity, that
is, when they are described in a curved spacetime and, conversely,
what are the effects of these forces upon the characteristics
of spacetime.

Gravitational effects on electromagnetism have been
studied exaustively. It has been obtained, for example, that the
infiuence of gravity can be thought of as being equivalent to
the presence of a material medium described by dielectric
constants ¢,y that depend only upon the geometry [e = E(guv)'
U= u(guv)], thus constituting a microscopic response to the
curved backgroun&1l0n the other direction of inquiry, mdny
interesting spacetime configurations, either localized (geonsﬂzl
or global (cosmological solutions}S{can be generated by means of
photons' energy. Moreover, according to the type of the interac-

tion development, an electromagnetic field may even generate
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non-singular expanding universe models, surmounting in this way
the strong restrictions that the "singularity theorems" have
pretended to establish[4]. The origin of this feature is to bé found
in the form of the photon-gravity interaction picture, which
allows the violation of one of the theorems' basic inequalities,
(Ruu - % Rguu)vuvv < 0 (for arbitrary observers endowed.with
four-velocity Vu). A concrete, solvable example of a situation

in which this inequality does not hold has been obtained in Ref.
[5], and examined in further detail in Ref. [6], where a non-
-singular, spatially homogeneous and isotropic cosmic solution is
exhibited, representing an eternal Universe, without beginning

or end.

Mutual influences and feedback are to be expected when
one attempts to analyse physical processes involving aspects of
distinct realms of physics. A remarkable example of this inter-
association may be found, in recent years, in the approaching of
the physics of elementary particles and cosmology, a connection
that has benefited both. Some scientists, apparently more wary,
have called attention upon the fact that there is, in practice,

a large disparity in the approximation quoted above: while we
have plenty of observations at the microscopic level, our
experimental knowledge about the Universe at large is scarce.
Hence, they argue, we should restrict ourselves to inferences
only from elementary particle physics into cosmology, and not

the other way round. Other scientists, however, disregarding this
reasoning, for inconclusive, have considered the other direction
of inference and derived conclusions about microphysical pro-

perties of matter from special characteristics of our Universe.

Indeed, even dealing with a rather simplified global model of
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the Universe, which still poses some as yet unsolved questions,
cosmologists were able to produce some valuable quantitative
relations, relevant for the description of the microworld domain.
To quote just one simple but very interesting example, it has
been possible, due to the examination of primordial element
abondances, to set up an upper bound for admissible massless
neutrino types[7].

In this same trend, it has been suggested that elemen-
tary interaction processes may depend on some characteristics of
the Universe., Consider, for instance, the phenomenon of disin-
tegration, described by weak interaction theory. Following
evidences put forth by various authors, it was finally esta-
blished by Lee, Yang and Wu that weak processes can be associated
to structures violating specular symmetry fparity non-conservation{gl

The interaction Lagrangian of a weak process can be written, for

example, as
o - U
Lint = gF ‘P(e)Y (1 + Y5)¢'(\))Wu Py (1)

where the vector boson Wu:is the mediator between the electron
and neutrino weak currents., How could the effects of, say, the
expansion of the Universe, be reflected in a direct way on this
interaction picture ?

One could follow the approach of Dirac, Jordan, and
others, substituting the Fermi constant gg by- a "coupling" scalar
field that should then exhibit a dependence oﬁ the Universe radius,
or better, on cosmic time. Due to the negative results concerning
a similar phenomenon in electromagnetism, this attempt can be

practically discarded in view of the electroweak unification we
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possess today. Nevertheless, if one considers the vg weak

part of the interaction, a new, distinct possibility arises,
which has no electromagnetic counterpart. Since one is dealing
here with two types of current, both axial and vector, there
could exist a cosmic dependence of the rate of parity violation;
this rate might be not maximal, as in the above example, but

rather described by the current
A M :
JU = 4!(e)Y (1 + E(t)YS)w(\J) (2)

where function €(t} that measures the violation rate -depends on
cosmic time only, due to the observed homogeneity of the Universe.
In this case, neutrinos and antineutrinos are produced in mixtures
of both left and right polarization states, the ratio of the
mixtures depending on their {(cosmological) instant of creation.
Note, however, that since we now live in a world in which € = 1,
if neutrinos are indeed massless then right-(left-) handed
neutrinos (antineutrinos) would be completely invisible to any
detection apparatus (save one employing gravitational interaction).
Thus, the only observable.éonsequence of the model given by

eq. (2) with respect to the detection of neutrinos (or antineu-
trinos) on the Earth would be the effective diminishing of the
Universal Fermi constant. In an early paperlg], it has been even
hinted that, in the same vein, CP violation could also be a
{(cosmic) time—dependént phenomenon, that should possibly vanish

as the Universe expands. Recently[10% this quéstion was reexamined
in connection with the problem of primordial element abondances,

and a suggestion was made on how a value of c(t) different from

unity could be made to appear and be useful in the removal of
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some disagreements between the observed rate of (primordial)
Helium formation and the standard cosmological model prediction.

Along these same lines of investigation, what could be
said about strong processes ? The situation here is more involved
since a complete field theory for strong interactions is yet
lacking. However, one can choice certain simple processes and,
from a direct generalization to curved séacetime, proceéd to in=-
vestigate the effects one would possibly find. The best candidate
for such analysis seems to be given by elastic interactions among
scalar particles, analogous to the reaction mk~+nk. We shall see later on
a simple model, allowing a complete analytical treatment, of such
elastic process in a curved background, which imposes resctrict-
ions upon the admissible values that the strong coupling constant
could possess in our Universe. It turns out that a very curious
numerical relation, involving old Eddigton's number, appears
along this quest.

In fact, the examination of the values presented by
certain constants of Nature has given origin to a vast series of
speculations. An approach that has gathered lots of attention,
in recent times, is provided by the so-called anthropic prin-

[T”,whnﬂninuxﬂs to correlate the actual, effective values of

ciple
several constants of physics with some properties of the world;
mainly those which imply the necessity of man's presence, as an
observer. This conception has had its origin in the very pecu%iar
ocbservation that certain adimensional ratios, .built up with usual
constants of physics, all seem to be related to Eddington's
number 1039. If Nature, it is argued, had not contrived such
amazing calibration of the physical constants, and provided for

certain stability conditions, man could not have come into
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existence — so the world must be what it is, since man existsa.
Unfortunately, neither this program, nor any other, so far, has
actually been able to devise a complete rationale for these
peculiar values. We éhall see in the following that in the pre-
sent model the restriction implied by the presence of gravitation
upon the strong coupling constantgsjs such that the ratio between
the minimum value allowable in principle and the actual value

observed results, surprinsingly enough to be given by

Minimum possible value of 9
Actual value of dg

-39

10

For an extremely curious "coincidence", Eddington's
number appears in this domain as well, suggesting that we may

have approached a new Pythagoric mystery.
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II. DYNAMICAL ORIGIN OF WEYL - INTEGRABLE SPACETIMES

(12]

Recently . 1t has been shown how a Weyl-integrable
spacetime (WIST) structure arises naturally when one treats the
variational problem of the interaction of (non-minimally coupled)
matter and gravity by means of Palatini's mthod[13] . _which consists of

taking both the variations Gguv of the metric and srﬁz

of the
affine connections as independent, in the wvariational procedure.
The argument is simple and direct: consider, for instance, a
coupling term representing the interaction of a scalar field ¢

and gravity, such as

s*16r * . (4)

Since the variations are presumed to be independent, a straightforward

calculation provides Einstein's equations for the vacuum and

alsec the condition

Qza 5
Iyvia =7 R Suv 7 (5)

which indeed characterizes a conformally-Riemannian or Weyl-

14 :
integrable spacetime structure[ 1 It is worthy at this point
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to observe that, though in effect a WIST can be conformally re-
lated to a Riemannian spacetime (RST), the actual importance of
condition eq. (5), in the context of any physically reasonable
theory on this subjec%, depends fundamentally upon the other
terms present in the Lagrangean describing the interaction; more
precisely, it depends upon the behaviour of these other terms
under conformal transformations. Consider, for example, what

happens in the theory expressed by

] . (6)

1 2 MV
R - 3 Ro™ + ¢'u¢’vg +V(¢)+2A+Lrest

Palatini's variation of this Lagrangean gives the following

equations:
1 2
- ST TY I S DU A (7a)
[J6+gRo =35 =0 (7b)
1 1.2 1 A
(E - -6-1) ’GU\J = - ¢'u¢l'v + i gu\’(dJ'Ad) + V + 211) . (TC)

The first relation is just WIST characterization, again; in turn,
the equation for the scalar field results to be non-linear, due

to the presence of the scalar of curvature R, which in a WIST
depends on ¢ and its derivatives; and lastly, we observe the
renormalizationefthe gravitational constant k. In virtue of the
Einstein’'s terﬁ % R in the Lagrangean, this system of equations

is not conformally invariant, and so the above theory describes

a Weylian structure that cannot be reduced by means of a conformal

transformation to a Riemannian one. In this case, one would expect
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lengths to vary differently under parallel transport from one
point to another, according to the chosen path (Einstein's
criticism against Weyl's original attempt to unify gravity.and
electromagnetism[15]fested precisely on this apparent difficulty).
On a closed loop, however, any length variation induced by the
transportation would be compensated by gravitational interaction
on the way back and so the total length deviation cancels out.

. Thus, nevertheless a WIST always dis?lays a local length variation
AL = £¢'ana, on a closed circuit one still achieves a total
conservation, §d¢ = 0, just as in the Riemannian case.

Note also an additional property of system.{(7}: the
condition for Riemannization is given by ¢ = constant; this
solution, however, will be compatible with the remaining relations
of the system only for some special types of potential V(¢) and
hence, in general, it will depend considerably on V. Furthermore,
solution ¢ = const implies that Einstein's equations reduce to
the form Guv = Aeffgu\)' thus inducing a transformation of the
bare cosmological constant_ﬂ or even generating one. Together
with the renormalization of constant k (in the presence of matter),
this feature permits a grdﬁitational behavior far more rich and

complex than in usual General Relativity.
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I11. CosMIC REPULSION

Highly daring and speculative ideas are commonplace
in physical investigations today, arousing fewer metaphysical
guandaries than before, and so nowadays it is quite admissible
to discuss, say, antigravitational aspects conveyed by theories
under current scrutiny {for example, it has been shown[16]that
Supergravity endowed with N = 2,3,...,8 fermionic generators
leads to antigravity). Nevertheless, it seems that the great
majority of physicists still supports tradition and takes only
purely attractive gravitational phenomena into consideration.

It is surely convenient, however, to examine the count
less possibillities that Nature would have ét hand in order to
turn antigravity into a true phenomenon of the actual world,
since we will be learning, at the same time, why certain con-
ditions are forbidden, or why certain properties may exist (see
Section VI). Still more interesting would be those schemes in
which no common law of physics were violated and situations
could be elicited where common matter (such as photons, neutrinos,
etc) accounted for the repulsive effects. One such scheme has

“?], and it might be worthy, for complete-

been presented recently

ness, to depict here a brief outl%ne of the main ideas concerned.
Let us consider the interaction of a scalar field

with gravitation according to the theéfy described by the non-

minimal Lagrangean

L = /:§\E¢:u¢'vq”“ - % Ro*d + V(™ e) + % R + 2A]
(8)
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The equations of motion, if we assume a prilori that

spacetime is Riemannian, are

e+ gre=- <0 (9a)
8¢

(g = g6, = = 200% 8 +o* 0 )+ 39 16% 97 4vs20] -

-z 16 e+ o 0e* + 20%0 19, +

‘5 (@78 + 070y + #T0, + 000 ) (98)

in which the double bar means covariant differentiation in RST sense.

If we limit ourselves to a quartic potential such as
* o
Vie*e) = - uie%e + oot (10)

then the trace of Einstein's equations reduces to the form

1R = ule%e - an, (1)

Conisequently, eqg. (9a) for the scalar field turns into
e+ w2 -3xm¢ - 120 -k’ 6% = o0 (12)

(where ¢2 = ¢*¢), which means that the gravitational effects upon
7

the field amount just to the renormalization of the mass

2 2 2
u2 Y lUgge = W - 3 kA v {13)

and self-interaction constant,

= 0 « —= kU » (14)
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The next step should be the search for a fundamental
solution ¢ = $g = constant, which were also a minimum of the
energy of field ¢ . Here a small difficulty is presented, con-
cerning the appropriate definition of the energy of a field
coupled non-minimally with gravitation. This obstruction is easily
surmounted if we adhere to the conventional approach, that is,

if we take the energy expression from

8 J Y=g L. = j-/ta T  sgHV (15)

| =

T = t - = ¢ G +

2 2
uv uw ~ 6 " (¢ Iy = ¢ u"v) ’ .(16)

r

where tuv is the energy-momentum tensor of minimal coupling,

(6% 6 L+ ¢* 0 ) =5 g, 06" 07 vl L a7

rd s

N =

MV

Solution ¢ = 99 = constant is given, according to eg. (12}, by

either
¢g = 0 (18a)
or
2 2kA - 3u° |
¢0 = 2[ = ] . (18b)
ky® - 120

Energy E is provided by the formula

3292 - 3o¢04 - kAo’
E =T = % (19)
6 - ko,

which has extrema, for the non-trivial case, given by the solu-
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tions of an algebraic equation of fourth order,

koo, - 120’¢02 + 602 20 =0 . (20)

A straightforward calculation allows one to see that egs. {18b)
and (20} are not always compatible; this will be the case only
if among mass u , self-interaction constant o¢ and bare cosmo-

logical constant A holds the relation

u4 = 8cA . {21)

This 1s certainly a strong and peculiar condition, but

(18]

nevertheless a plausible one . Curiously, in this case
the ground-state fundamental solution eq. (18b) coincides with

its corresponding value in Minkowski space,

2
2 _u
¢0 = 35 ° (22)
Since gauge symmetry is broken, we call this an induced symmetry
breaking (ISB) mechanism.
Some final observations are worthy of note. Consider

the graph of the energy E(¢y) with respect to ¢, (Fig. 1):

’EWJ-A |

e
3

R
'

"\

. 2
Fig. 1 - Plot of E(¢0) - A versus ¢0, when 2kA=3u~ > 0

L
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Observe that points ¢0 =0 and ¢, = ¢

m
minima, provided that (2kA-3u%) > 0, but the non-trivial solu-

tions represent states that are more stable against arbitrary
perturbations; at.theée extremum points, furthermore, the

equation of motion for geometry turns into the free-field form
Guv = 0. Hence, when field ¢ is at ISB ground states ¢:' in what
respects gravitation the system behaves as matter-free. What
would happen, on the other hand, if some other matter were pre-
sent and field ¢ had reached either of states ¢t ? We already
know that constant solutions ¢ = ¢0 lead to the renormalization

of the gravitational constant k; thus, a rapid calculation will

give

=—k - tt = oT -
Guv ren TUv(ma er) ngtgzz) (23)

When the minimum condition (2kA-3u2) > 0 holds, solutions ¢1

are stable and

Xk =—r—— 50 , (24)
TEN (3u©-2kA)

as it should. However, if mass u is sufficiently small (u < NTBBQV),

so that (3u2—2kA) < 0, then the system is at an unstable (maximum)

< 0) can be generated.

condition in which antigravity (i'e":kren
Free-field form Gﬁv = 0 of E;nstein's equations is

due to the relation.imposed upon u, ¢ and A (eq. (21)). Let us now

discard this condition. The energy picture in this case, in

the absence of other matter constituents, is displayed on

Fig. 2.
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‘Eﬂg—n

__/ | - ":23}‘2 ' E
Sk 32 )

Fig. 2 - Plot of E(¢0)-ﬁ versus ¢0 for the 0 = 0 case.

For any value of A, there is no extremum condition compatible
with the non-trivial constant solutions ¢, = 2 { V6u2-4n)/u;
their corresponding energy states, which we labeled S(%), are
highly unstable and decay assymptotically to the De Sitter

solution. The equation of motion for the geometry, in twmn, re-

sults_to be

Gy = dags Tyy 7 (25)

where the effective cosmological constant is Aogg = + % uz.

This analysis shows that the presence of a self-inter
action constant ¢, in this theory, helps to increase the

stability of symmetry breaking solutions.
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IV, WEYL-RIEMANN REDUCTIOM AND THE COSMOLOGICAL CONSTANT

In order to examine some consequences of spacetime
Weylization, let us consider the same non-minimal coupling bet-
ween a scalar field ¢ and gravity as in the previous section,
but here in the context of Palatini's variation. Non-minimal
Lagrangian eq. (8), in this case, allows for dynamical equations *

similar to egs. (7):

Je+gr -3 =0 (26)
G - -‘Pi)c; == b+ 6% 0" 4w e%) 420

k 6" Tuv HAu’,v) 2 gu\) A (27)
Yuvia = Tyv Yo 7 - {28)

.2
where ¢2 = ¢*¢ and w, 2z [-&n (]-1{- - -‘%—)] o (WIST characterization).
¢ Q-
For a quartic potential V(¢2) = —m2¢2+c(¢2)2, contraction

of Einstein's equations eg. (27) and the use of eq. (26) give

lnend? -mn 1036 (29)

so0 that the equation for the scalar field ¢ turns out to be

) _
e+ =506%+ - %016 + ( 5= - 20)¢%=0

(30)

[19]

We also knew from WIST theory that

1 ] 1
G}JV(WIST’ = G]J\)(RST) - wullv -3 wuwv + {w Ila -3 w’)g
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where w2 = wumu, and the double bar refers to RST covariant
differentiation, employing Christoffel symbols only.

Now we try to elaborate an hamogeneous and isotropid universe,

choosing a Friedmann-Robertson-Walker line element such as

2 2

ds® = at® - s?(t)ax? + o?(x) (a0%¢sin0as?)] . (31)

In the sake of simplicity, we take ¢ = ¢* from now on and adopt

the ansatz ¢

¢${t), so that

0

w = al(t),oI = éGa . (32)

2
where a(t) = [-tn(g - £4EL)1; conversely, ¢%(t) = E(1-ke (%)),

Eq. (30) for the scalar field then reads

. 3 e .2
K (a + 7 ab - a%) k 232 ea( 68) 68 _ o
2 a B EPVCERY R A A
(e =k} (e” -k}
(33)
2
(with b(t) = £r 52(t), B = ( Sg--20), v = m? - 2 kA)) , while

components (0-0) and (1-1) of Einstein's equations eq. (27) give,

respectively,

(3-5)% - 4ee™ = 2 (g-p) (34)
1] L] LJ L Ll / -
(5-8) - 3 3-B)% + ] 326% 4 ce™® = L qoem) , (39)
. 3 ka° a
in which Qfa,a] = T A s Plal] = e [{Vv+27A), and where, in
{e“=k}
view of the required equality of the spatial components of the
2
mixed tensor G“ ; we have taken 1 g_g = € = const. = {0, £1).
v O ax .

In the case of Euclidean section, £ = 0, and we cobtain
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b=atF (36)
F+3F=2tQ |, (37)
in which Fla,a] = (%(Q-P))1/2.

For the homogeneous equation for F, that is, when

Q = 0, we get

F = const. e"'—:"/2 . ' (38)

But Q = 0 implies a = const., so that F = H = const.; then,

s? = &P = const. e%Ht . (39)
Equation (33) for the scalar field settles.the value of constant H,

in texrms of the field's basic quantities:

1/2
B—
H = rB-I:[ . (40)

Since a = constant amounts to wa = 0, we achieve for the homo-
geneous case a De Sitter solution in a Riemannian spacetime
structure. As we have seen in the last section, a spontaneous symmetry
breaking mechanism can generate a cosmological constant, thus
inducing De Sitter-type universes. In the present theory, how-
ever, it appears that the existence of a cosmological constant can
be associated to the Riemannian nafure of spacetime. Hence,

the dynamical interplay between gravity and scalar fields, in
this context, allows for an interesting interpretation: the pre-
sence of a cosmological constant in our Universe as a consequence

of a reduction from a WIST structure to a Riemannian one.
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V . AN ETERNAL UNIVERSE

As we have commented at the Introduction, it is possible
to generate non-singular cosmological models through the non-minji
mal coupling of a vector field and gravitation. We shall now

exhibit a concrete example of a solution displaying this pnqxwtyﬂhs]t

Consider, for an a priori RST structure, the theory

given by

4

[}
h
Te}
%
|
] —

—- :Euv'f.uv+BRAuAu] , (41)

in which, as usual, fu « The equations of motion are

v A[u; v]
= - gral , (42)

1 2 2 2
(x + 8AT)G = -E -BRA A+ B[ JAg - Al,., . (43)

. 2 _ u _ _ o 1
with A" = AHA and Euv = fuaf vt 7

It is then possible to show

aB
faBﬁ g

[5]

uv
that, choosing a Friedman-.

Robertson-Walker line element such as eq. (31) and the ansatz

Az = Az(t), a solution of this system is given by

[

a%(¢) =

% (1 4———1-—-) , (44)

t +P

LS(t) = t°4+P ' (45)

{(Novello-Salim sclution) in which P is a constant (in fact, the
minimum of the Universe radius) that measures the intensity of
the vector fleld at ¢t = 0; when P = 0, one obtains Minkowski

spacetime in Milne coordinates. In the P # 0 case, one may
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indeed build models that present no singularity, and thus can
be infinitely old.

Such models can'be better visuallzed by means of a
dynamical system anal'grsis of the generic equations of motion eq.

(43) for a FRW metric, which are

s__#8
3 S = a (496)
E,,8 20, 84 (47)
3 g2 g2 S D
1 u 33 Nl .
where we have put Q = (T{—+BA“A }; calling x = =3¢ Y =g this set
reduces to an autonomous planar system:
;c=—%x2+xy , (48a)
. 2 :
y = -y - xy : (48b)

The characteristic aspects of this dynamical system
are summarized in the following phase portrait, projected on the

Poincaré sphere (Fig. 3):

Fig. 3 - Graph of the non-minimally coupled photon-gravity system eq. (48).
Novello-Salim solutions belong to quadrants II and III.
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Some considerations about this dynamical picture:
Novello-Salim solutions belong to quadrants II and III
(the remaining solutions are of interest in their own right and
were examined exaﬁstibely in C. Romero's work "Some Remarks
Concerning an Eternal Universe", to be published). Each solution
is Minkowskian when it begins at point A (t = -=}; its point of
rmaximum contraction is reached at M2 (t = 0), and it terminates
at point B (t = +®) , Minkowskian agaih. Hence, we may say that
in this model the Universe initiates from Minkowskian Nothing,
at the infinite past, contracts up to the minimum radius P, at
(t = 0) — and so presents no singularity — and then expands
indefinitely until it wears out in Minkowskian Nothing again, at
the infinite future.

We observe further that an intriguing solution of this
very non-minimal scenari¢, but using Palatini's method instead,

]

has been recently obta:i.ned[20 ; in which a non-minimally coupled
vector field (which can be regarded as the physical cause of the
evolution of the metric properties of the Universe) results to be
an indeterminate function of time, related to the degree of
Weylization of the spacetime structure, and which is not settled
down by the dynamics. Such property, that can be conceived as a

driving-from-without feature, endowes this model with a curious

"marionette~like” character.



CBPF-NF-033/86

-22-

VI . STRONG INTERACTION IN A CURVED SPACETIME

We have attempted to survey, in preceding sections,
some modern approaches towards the problem of the reciprocal in-
fluences between weak and electromagnetic processes and gravi-
tation. ILet us now pose the question: what could one say about
strong interaction processes in a curved spacetime ? This is,
doubtless, a much more cogplex domain, since a complete field
theory for the strong interaction is still lacking. However,
notwithstanding the present theoretical limitations, we shall be
concerned in what follows with a strong process that does possess
a Lagrangian representation, viz., the interaction among T and K

mesonic scalar fields, described by

Lo = gs(¢*¢)w(¢*¢)K . (50)
This must be under_stood as a phenomenological Lagrangean

in which dg stands for a strong coupling constant (observe that L

is conformally invariant). How can we investigate gravitational

effects upon this interaction ? Two points must be clear from

the outset: firstly,the following generalization from a flat space-

time context to a curved one is by no means unique; secondly,

the order of magnitude of the perturbation suffered by this inte-

raction, due to the curved background;, might be so small that

one could, in principle, disregard any gravitational effects as

physically irrelevant. Though this account seems to be true, at

first sight, we will "see later on that in fact it is not correct in general_.
A suitable extension of fhe flat~-spacetime (¢,y) inter-

action outlined above to a curved spacetime (¢'w'ng) cohfiguration
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may be given by the quasi-conformal theory
Y Y uv 2 * uv
L /_g- [¢"u¢'v)g + V(47) + w’(ull”v)g +

U B TN TP Y (51)
in which, instead of using the actual, experimental value gg of
the strong constant, we have ghosen a free parameter £ in
order to find out whether the coupling with gravitation imposes any
constraints upon the spectrum of admissible values of £
Observe that both scalar fields are non-minimally coupled to
gravity.

If spacetime is a priori identified to be Riemannian,

variation of Lagrangean eqg. (51) yields

1 2 Vv
-D¢+gn¢-w¢--ﬁ*=o ’ (52)
[Dv+gre-86% - §% =0, (53)
(% = % (¢2+¢2))Guv = -Tyylel = T, 0] + %£¢2wzguv+ﬁguv !

(54)

where Tuu[¢] has the form

* 1 * Y 2
T8 = 870 4y -3 [0]\8,9he + VO] g, +

1 2 Y~
v e L1 90 — % ¢ usv (55)

and analogously for T  [V¥]; once again, we take potentials V and W

H
given by quartic expressions,
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4

V(92) = = m2¢% + oo , (56a)

4

W(wz) - M2¢2 + Y . {56b)

Contraction of Einstein's equations eq. (54) and the use of egqs.

(52) and (53) gives

lrane? +u®y? - . (57)
Remark that self-interaction constants ¢, n do not appear expli-
citly in the trace expression; hence, from now on we.will specialize
to the case of null self-interaction constants (¢ = n' = 0).

If now we ask whether there exists a solution of this
system for non-tfivial constant values ¢ = ¢0, Y = wo, the answer

is affirmative. Indeed, from egs. (52} and (53) we obtain

1 2

¢0 - : _ , (58a}
1 2
(=R + m") :
w02= 6 : ] (58b)
Use of eq. (57) for the trace then yields
2 ki® (m?-M2) -2£ (2kA-3M°) (59)
¢0 = 2 2 r
E[6E~-k{M"+m™)]
2,2 2 2,. :
q)2___ km“ (M ~m" ) ~2& {2kA=3m "} . {60)

0" greg-k(M°m?)]

Thus, when system (¢,w,guv) is found at state (¢ = ¢0,

Y = wo,guv), the equation for geometry reduces to
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1 _ 1 ,.2 .2
lx =5 (g *¥ )G, =

1, 2,2 .2 2 2,2 | |
= il—m ¢0 "!‘1 wo + E¢'o ‘4’0 + Zﬁ]gu\, ’ (61)
so that we can write, in general, that

Guv = Aeff Iy = Koen Tuu(matter) . (62}

[Since (ﬂ/ui) 4y 10-80, the. presence of the bare cosmological cons-

tant A is of no importance for our later results and so we drop

it from now on.]

Two significant features deserve comment: the gravi-

tational constant k is renormalized,

-2 2
Kren ~ Lok sm )] (63)
in which
k 2
Ee) ¢ M tm , (64)

and an effective cosmological constant is generated,

- 2.2
A _ 3m M

eff 65-k(M2+m2)

k . (65)

Figures 4 and 5 display the behaviour of both kren

and Aeff as functions of the strong parameter § .
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Fig. 4 - Graph of the renormalized gravitaticnal constant kyon (eq. (63)) as
a function of the strong parameter £, in the state (¢0,w0,gw). Point
A corresponds to £ = k(M +?) /6.

‘Aeﬁ

— e S——— e S— S w——

b

Io

Fig, 5 - Graph of the effective cosmological constant A s leq. (65)) as a
functions of the strong parameter £, in the state (¢0,w0,gw).
Point A corresponds to £ = k(M?+m?) /6.
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Observe that the signs of both kren and Aeff change
according to the range of values of £ . Indeed, we can see from
Fig. 6 below that there are ranges of £ in which kren is

negative, and so repulsive gravity is generated:

ren ren ren ren
NN NNN I INNNNFRY,
777777 77777777

0 S=) c S4) = 6

k > 0 k <0 k >0 k < 0 k >0
i
Fd

v
[44]

min

Fig. 6 - Analysis of the sign behaviour of kren with respect to parameter &.
Dashed sections correspond to negative values Of]ﬂxxxapd hence to
antigravity. Point C corresponds to £ = k(M?+1?) /6.

Thus, if we require gravity to be strictly attractive,
we are led to impose an inferior bound for parameter £, in order
: 3[21] L]

to ensure that kren remains always positiwv It is certainly a

remarkable fact that this simple, basic property of gravity

implies a restriction upon the strength of the strong interaction.
What is the ratio between the minimum value allowed for

parameter § , Emin = £(+) = % (M+m)2, and the actual, observed

value gi n 15hc ?  Taking into account that W, v U, we obtain

that

g
S 1039

£

min

Though one would surely expect that Nature had selected
a very large value for the actual strong constant, very far from
the minimum allowed, it is indeed surprising that such ratio re-

produced precisely old Eddington's number !
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As we have quoted at the Introduction, the relation
of Eddington's number with large, adimensional ratios of physi-
cal constants has troubled physicists since long. Though this
new "coincidence", arising from an as yet unexpected physical
domain, adds no further understanding to this puzzle, it certain-
ly increases the mystery surrounding this apparent connection

between the microscopic and the macroscopic worlds.
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