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ABSTRACT

Within a real-space renormalization-group framework based on
self-dual clusters, we calculate the conductivity of a square-lat
tice quenched bond-random resistor network, the conductance on
each bond being g; or g, with probabilities (1-p) and p respective-
ly. The group recovers several already known exact results {(in-
cluding slopes), '‘and is consequently believed to : be numerically
quite reliable for.almost all values of p,and all ratios glkﬁ (in
particular, g1=0 and g,=% with finite gz\reSPectively correspond
to the insulator-resistor and superconductor—resistor mixtures).
In addition to that, we propose an heuristic anafyfic expression
faor the conductivity which is believed to be a quite satisfactory

approximation everywhere not too close to the percolation point.

Key-words: Resistor network; Conductivity; Renormalization group;
Bond-random square lattice.
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I INTRODUCTION

Electrical conduction in random resistor networks and the
associated criticality have been the theme of a considerable a~

mount of efforts during recent years. Theoretical approaches such

as computational simulations[172] [3,4]

[5-11]

. renormalization groups and

others {12-14]

, as well as experimental results are already
available. Nevertheless the problem is far from being fully: solved,
even for very simple systems such as the square lattice with quenched
binary distribution of conductances (bond conductance g; or 9, with
pfbbabilities (l1-p) and p respectively). The corresponding exact
functional dependence of the conductivity o on p, 9, and g, is
gtill unknown.

In the present paper we introduce a real-space renormaliza-
tion-group (RG) formalism which follows along the lines of those
recently developed in Refs. [15,16} to treat the conducfivity of.
simpler but related systems. In Section II we introduce the model

and the RG formalism, in Section III we present the results, and

finally we conclude in Section IV.

ITI MODEL AND RENORMALIZATICN GROUP

We consider a square lattice with the following conductance

distribution associated with each bond:
P(g) = (1-p)d(g-g,) + pélg-g,)  (g,,9,20) (1)

The conductance of a parallel or series array of two bonds



CBPF~-NF~032/85

(with conductances §1 and 62) is respectively given by

I+
[}

§1-+§2 (parallel) (2)

=}
I

= §1§2/(§1+§2) {series) {3)
The latter can be written in the same form as the former, namely

g, = 32 + 3, (4)

with

o® = g2/ (i=1,2,8) (5)

15
where D stands for duall ]'(see also Refs. [17-19] for a related
discussion in the context of the Potts and 2(N) models), and g,-
is an arbitrary reference conductance.

Let us now introduce the following convenient variable‘ls]

8§ = —d— (6)
g+q,,

which satisfies an interesting (precbability like) property, name

ly
sP(g) = sig®) = 1-s(g) (7

where we have used definition (5). On the basis of this S-varia-

ble it will be possible later on to construct a quite performant

RG (similarly to what occurred for the bond-dilute pniﬂamnjl).
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We next introduce the RG formalism which yields 0(g,+9,+P),
by renormalizing the self-dual Wheatstone bridge cluster (Fig. 1l(b)
into a single bond (Fig. l{(a)) {(the RG linear scale factor b e-
‘quals 2). The conductance 9y of a Wheatstone bridge with elemen-
tary conductances §1, 62,...,§5 as indicated in Fig. 1l(b) isgiven

{see for instance [15}) by

§,9,9; +9,9,9, + 9293'34 +§,3,3, +35(3,3, + 9,3, + 9,3, +3,3)

98 = (8)

§,3,+8,3;+3,9, + T59, + T (3,+43,+5,+3,)
Consequently the distribution law PH associated with Fig. lib) if

each one of its bonds is associated with the distribution P{q)

(Eq. (1)) is given by

s . . 391 + 59,9,
PH(g) = [(1-p)° + (1-p)'pl 6(9—91) + 4(lp)'p S {g=-——-——)
5g1+392
2 . 2
_ g, +49.9, + 3g 29.9
+ 2(1p) %p? Slg-—m— 2 72y | 2(1:p)%p? S(g-—12)
29y + 69, 919
3 2 a - 2
_ g; +5g92g,+29.92 g, +4a%g,+39.9
+40p)%* 8lg-—L12 L2y, 20p)p? (gL 1
297 + 59192 +g; 39, +49192*q’
gl + 4g2g. +3g,92 g+599 2g,92
+ 2(1-p)2p° 6(g——-2 —21 % 1) +40-p)%p* S49- 2_""271 en,
3d, + 4‘3'2‘3'1“ 9; 2‘-”2 + 5‘3291" g1
29,9 g2 + 49,9, + 392
+ 200-p) 27 Slg-—20) + 2(1p) %p® blg-2—21 1)
97t 29, * 89,
_ . 392
+ 4(1-p)p* S{g- —-—-—-———) + [(1-p)p* +p )]6{‘;*‘3‘2) (9)
59 +39;

We could in principle follow the evolution, under successive re-
normalizations, of the distribution law until it attains an invar

iant form. This probedure has in fact already been used[al for
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random resistor problems. However an.operationally much simpler
and numerlcally excellent procedure (which has yielded quite sat
isfactory results for the Potts model[lgl) can be followed in-
stead, namely to approximate distribution P, {g) by a binary one,

-given by
P'(g) = (1-p’)8(g-g}) + p’'S(g-g}) (10)

where p',-g1 and gh will be completely determined (as .. functions
of (p,gl,gz)) by imposing the invariance of the three first momen
ta of a function f(g) to be chosen. A natural possible choice is
f{g) = g, and we shall denote g-RG the corresponding RG. However,

a more sophisticated and convenient choice is possible[lsl

namely
f(g) =S(g} (we denote S~RG the corresponding RG). More precisely,

we impose

<S(g)>p, = <S(g)>, (11.a)
' H
<[8{(g)]1%>5i = <iS{g)]*>, (11.b)
H
<[8(g)1°>5, = <(8(g)]°>, (11.c)
H

hence

+59.9
5 o " 1 1%2 -
[(]_..p) + (l_p) p]’Sl +4 (l_p) P S(-.._._..__....) + «es=F (p'sl '52)

] ¥, gl
(1-p')8] +p'S),

59, + 3qg
oz ?5g ? (12.a)
) _ a2 +5q.9
(1-p')S}2+p'Si = [t1-p}® + (1-p) "pIS? + 4 (1-p) "ol (bt 172p2 =G(p,5, ,S,)
: ) . 591+392
(12.b)
392 +

5g.9 _
L 12y, -=H(p,S,,S,)

(l_pl)s?_'__plslza
59,439,

[(1-p) * + (1-p} “pIS? + 4 (1-p) "pIS | 1

(12.c)
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where Siiﬂ(gi) and SEES(gE) (i=1,2) .- The solution of the set of

Egs. (12) is given by

2
p' =- L (13.a)
1+L2
sa = F+L/K (13.b)
S =-F‘+%/f (13.¢)
where
K=zZG-F>20 (12)
and
- - 3 _2 3_ - - 3
L = v (H=-3FK=-F°}? &+ 4K (H=3FK-F?) (15)

2k /2

The upper (lower) sign in Egs. (13.b) and (l1l3.c) is to be wused
in the region'81> 32.(SI¢£E), i.e. 9,%9, (gl<g2). Egs. (13) un-
ambiguously - provide p', SE and Sb as functions of p, 51 andia (or
equivalently p', gi and g& as function of p, 9, and gzg' the re-
ference conductance Ie is cancelled out everywhere due to the ho
mogeneous structure of Egs. (13)), thus formally closing the op-
erational problem. Finally, the conductivity ¢ of the system, as

a function of p and gl/g2 for say fixed g,, renormalizes as l/g2

(see Refs. [3,15,16,20,21]).
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I1I

RESULTS

‘The recursive relations (13) provide the surface indicated

in Fig. 2. We note that:

1)

ii)

iii})

iv)

two fully stable fixed points exist, namely (pﬁ%}32)=(0,0,0)
and (1;1,1), which enable (through the determination of the
separatrix between their respective attractive bassins) the

numerical calculation of the surface we are interested in;

the insulator-resistor (superconductor-resistor) particular
case corresponds to the lines onthe Sl=0-—-and_52=0 4Sl=l and 82=1)'

planes;

the homogenecus or pure case (g1=gz) corresponds to the twisted

H-~like line constituted by the p=0, p=1 and s, =8 segments;

2
the equal-concentration case (p=1/2; g.#g,) corresponds to
1" -2

the line Sl+52=l.

In Fig. 3 we have represented, in the (7,p) space for fixed

g, and typical values of a = 91/9230' the surface appearing in Fig. 2.

angd

The present S-RG provides the following exact results:

doip)| _ 2a{l-a) (16)
o{l)dp p=0 l+o

consistently
da (p) _ 2(1-ax) an
slapf _, l+a

as well as
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- 7 -
a(0)/a(l) = & {18)
and
glp) oU-p) _ , (vp) (19)
g(l) o(l)
hence
g(1/2) /o(l) = Yo (19')

Eq. (16) recovers the d=2 Eq. (9) of Ref. [4]; Eq. (19) recovers
Eq. (5) of Ref. [9]. The g-RG is numerically less performant: for

instance, instead vf the exact Eq. (16), it yields

do (p) _ 8a(l-=a) | {20)
a(LIP| o 3a45

which coincides with the (approximate) (d,n)=(2,1)_-Eq. (8) of
Ref. [4].

The critical exponents t and s (defined, in the p>p,=1/2 bond
percolation limit, through c(p;a=0)m(p—pc)t and c@na=w)“&?9hrs)
co:l.ncicle{91 for the square lattice, but their exact numerical val-
ue is still unknown.To treat them within the present S-RG we cal
culate the Jacobkian J'Ea(p',u',SE)/a(p,u,SZ) at the percolation

point (p,a,32)=(1/2,0,1), and obtain

%ﬁ o o

0 23/12 0 (21)

113
5 0 23/12
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whose eigenvalues are l1=13/8 and A22A3=23/12. The thermal criti
cal exponent v==£nb/£nlr as ?ell as the exponent t=s=£nA3ﬁbﬂ1 we
obtain are indicated in Table I.

Before closing this section, let us heuristically propose an
approximate analyiic expression for o(p)/o(l). Following along

the lines of Refs. (27,28,29,30} we propose

<§> = 1/2 (22}
hence
(1-p)s, +pS, = 1/2 (23)
therefore
_{1-pla P _ 1 (24)
a+o{p) /o (1) l+aip) /o(1) 2

and consequently

9 _ 1 (AT T(I=35) 7 + 46 - (1-a) (1-2p)] (25)
c(l) 2

This expression satisfies alf the available exact nelations, name

ly Egs. (16)-(19). Nevertheless 4t Lé not exact as it leads to

Sp) | zp1 (26)

for a=0, and
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-9 -
otp) L (27)
o(l) 2p-1

for a-» =, consequently t=s=1 which is wrong (see Table I). However,
not to close to the critical region (p=1/2 and a+0 or a+«) Eq.(25)

should be a numerically quite reliable approximation for o{p)/o(l)

IV CONCLUSION

Within a real-space renormalization-group framework, we have
calculated, for arbitrary concentrations.and values of the {two}
possible conductances, the conductivity of a .square-lattice quenched
bond-random resistor network with a binary distribution of conduc
tances. The results are very encouraging as our best renormaliza-
tion group (namely the S-RG) recovers aff the available exact infogi
mation (critical percclation probability, slopes, dual relations)
and a satisfactory value for the insulator-resistor and supercon-
ductor~-resistor mixtures critical exponents t=-s=1.340(to be com-
pared with other recent numerically reliable values sujlas]“26[23h
1.28[24], 1.30[25],143&.!26]). In somé sense, such a high accura-
cy is not normally expected for a renormalization approach using
such a small cluster (b=2). Three reasons converge for this fact
to happen: (i) both clusters of Fig. 1 are self-dual (two-rooted)
graphs, a choice which since long ié knom[ﬂ?”] to be very comwenient
for the square 1atticé: (1i) the renormalization space is relati-
vely large in the ‘sense that it is three-dimensional @usl,sz);(iii)
last but not least, the averages are performed on a'very convenient
variable (namely the S~variable) as it transforms, under duality,

as simply as a probability (see Eq. (7)). An interesting technical
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point is worthy.to be noted: the exavt critical gmtmbﬂﬁtyspgﬂJZ
has been obtained without imposing a priori a pure percolation re-
normalization group recursive relation as usually done (see, for
instance, Ref. [15]}.

Finally, we have proposed, on heuristic grounds, a simple .an
alytic expression {Eg. (25)) for the conductivity which, similar
ly to the present S -RG approach, also recovers aff the available
exact information. Excepting for the critical region (where it
fails in reproducing satisfactory values for t=s}, this expres-
sion is believed to be numerically quite reliable.

We acknowledge useful discussions with E.M.F. Curado, P-.R.
Hauser, A.M. Mariz, L.R. da Silva and A.0. Caride, as well as
fruitful remarks‘by'h. Coniglio. One of us (U.M.S.C.)} has bene-

fitted from a Fellowship from CAPES (brazilian agency).
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CAPTION FOR FIGURES AND TABLES

Fig. 1 -~ Two~terminal self-dual arrays of conductances (o and e

Fig » 2 -

Fig - 3 —

Table 1' -

respectively dencte terminal and internal nodes). Within
the present RG cluster (b) is renoxrmalized into cluster (a).

RG flow in the (p,sl,szl.apace. The separatrix (surface
delimited by the heavy lines) between the giedominated
and the gz-dominated regions is invariant under the
(p,sl,sz)+*(1-p,82,51) transformation; the p=1/2 line
constitutes an invariant sub-space corresponding to the
equal concentration model. o, @ and | respectively de-
note fully stable, fully unstable and semi-stable fixed
points.

Concentration dependence of the quenched bond-mixed re-
sistor square lattice conductivity, for typical ratios
91/92 (numbers on curves). g1/g2=0 and gllgz=m -regpec-
tively correspond to the resistor-insulator and resistor-
~superconductor mixtures. The dashed line indicates the
p=1/2 asymptot.

Present RG and other available values for the critical
exponents v and t=s.
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TABLE I
g-RG | s-RG others

1:428 |1.428 | 4/3 (exact!?*h}

1.235 11.340 | 1.26[23] (24
1.28 + 0,03024]
1.3?&51
473126)

' 1.237[15]
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