TOETOURSRRTR AT R LT T

CBPF-NF-030/82

ON THE DYNAMICS OF NON-HOLONOMIC
SYSTEMS: THE CONSTRUCTION OF A
LAGRANGIAN AND A HAMILTONIAN
by
C.A.P. Galvdao and Luiz J. Negri*

Centro Brasileiro de Pesquisas Fisicas - CBPF/CNPq
Rua Xavier Sigaud, 150

22290 - Rio de Janeiro, RJ

(*)0n leave of absence.from Universidade Federal da Paraiba,
Pb, Brasil

Partially supported by CAPES, 'Brazil



ABSTRACT

We show that once the motion of a non-holonomic system- is
known if is possible to reduce the system to the holonomic form.
A (singular) Lagrangian function and a Hamiltonian which cor-
rectly describe the dynamics of the system can be constructed.

The procedure we developed is applied to a well known system.



1- INTRODUCTION

The Lagrangian description af a mechanical system is-based
on the knowledge of the Lagrangien function which: is supposed
to contain all ‘the physically relevant infermatiens. on:the sys
tem. In general the systems which eccur in nature-are subjectéd
to forces of constraints, Mathematically this meansathat= in
order to give a’écrrect'deSCription of the evolution -.0f. the
system one must take in account a certain number;bf relations
among coordinates, velocities and time which expfess the ex-
istence of the forces of constraints. Those functions are known
as constraint functions or, simply, censtraints, |

There are several kinds of constraints. Among those we
will consider two very important classes. Denoting by qa(t)
andféa(t),the generalized coordinates and velocities, o=l...,N,
we say that the constraints are holonomic or geometric con-

straints if they can be expressed as K<N equations of the fom
$;(@,t) = 4;(qy,ee,qyet) =0 ,  i=1,...K . (1.1)

General velocity-dependent or kinematic constraints are ex-

pressed by equations of the type,

‘pi(q,qyt) = q)i(qlﬂ"an;a:lss"(.lmat) =0 ’ i=1""';K- : (1'2)

When equations (1.2) cannot be reduced to the form (1.1) we

'say that the constraints are non-holonomic. [Neimark and Fufaev



(1972); Saletan and Cromer (1971)]

An important point on the theory of constrained systems
is the question of the existence of an action principle. It is
known [Saletdn and Cromef-{1970)] that the equatiéns of motion
for such systems’ can be-obtained using variational techniques
both for holonomic and non~holonomic systems,~ the rdifferencé
in approach laying in the-choice of the comparison paths. The
results 56 far accepted can be summarized ~as: follow. Let
LEL(qd,&&.t)EL(q,&,tﬁ“denote the Lagrangian functibn'for the
system when there are no constraints present which we call the
free Lagrangian. The corresponding Euler-Lagrange vector will

be denoted by

A = = S . 2 ‘e '0&-‘-‘-‘51,'...,1\‘ - . . . (1'3)

The dynamical evolution of the system under the influence of

the constraints is given by (1.1) and

poo=al 2 (1.3)
‘o 3q® R
for holonomic system, and by (1.2) and
T
- 1 1 :

Ay = 2 T (1.5)

aq _

for non-holonomic systems. We use the convention of ‘summing

over repeated indices and in the above expressions Al are
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Lagrange multipliers. As it is knownhoth cases can bedealt’
with in a unified way by using:égﬁﬁ instead of $,=0 as ‘the
constraint equations in the holonomic caseé.

The point to be emphasized is that we'do not' have a
Lagrangian function ﬂ(q,&;t)fwhich.completely describe the
dynamics of the system including©the informations - concerning
the' existence of the constraints.: Consequentely we do not have:
an' ‘associated action principle-either."

The existence of such”a ‘Lagrangian functidn;isfobvhnSIyﬂ
desirable not only from the classical ‘point of view $er "it-
would enable one ‘to quantize- the systen employing well“known
procedures. For holonomlc»systems it 'is possible to constnxx

a Lagrangian function. Indeed, it is given by
L =L+t o g1.6)

and the associated action principle leads to the correct e-
quations of motion and fhe‘cbﬁétraint éﬁuations. -

It is usually accepted |[Saletan and Cromer (1970); Gomes
and Lobo (1979;} that for ﬁdn holonomic systems it is not pos
51b1e to construct such a Lagranglan function so that in this
sense there does not exis St an action pr1nc1p1e for such sys—
tems.

The purpose of‘this paper 1is to ﬁake some developments
about the existence of a Lagrangian funct10n:ﬁn~nmnholonom1c
systems. We will show that once the motion of a non-holonomic

system is known, it is possible to construct a Lagrangian



function for  the system. This Lagrangian function will
correctly describe the dynamics of the system. With the
Lagrangian so constructed we will show how to pass to
the Hamiltonian formalism thus providing one with a consis-
tent framework for canonical quantization. We shall notbe con
cerned with the construction of an action principle for non-
holonomic systems. This subject is presently under investiga-
tion. The paper is organized as follows: In section 2 we for-
mally analyze the existence of an action principle for con-
strained systems. In section 3 we discuss the meaning of. the
integrability conditions for non-holonomic constraints and show
how to-construct the Lagrangian function for such systems.
Sections. - 4 . is devoted to an application to a well
known system; some details are presented in order to clar
ify the method we developed., The Hamiltonian formalism is con

sidered in sections 5 and 6. Final comments are in section 7.

2- THE ACTION PRINCIPLE FOR CONSTRAINED SYSTEMS

Given a non-holonomic system our concern is directed to
the g queﬁtion;' Can - eéﬁations (1.2) and (1.5) be .ob-
tained from. a variational principle 6{Edt=0? We understand
that the best way to look for an answér to this question  is
to analyze it from the point of view of the Helmohltz {condi-
tions [Engels (1975)]. Equations (1.2) and (1.5) are obtained
under the hypothesis that system in study is described by a

free' Lagrangian function L(q.&,t) and the constraint equations



¥(q,q,t)=0. (*). The Eule;-Lag;ange vector (1.3) corresponding
1

to the free Lagrangian L can be written as,

-' s "'8 % . o
- = Bmacqngt)q_ + Ca(qsq.tt) . (2'1)

. ¢ aL oL
A = — m
d 99

The functions Baﬁ(q;&,t) and Ca(q,&,t) are required to

satisfy the following conditions [Engels (1975}]:

= 2.23 .
BaB T BSa ? ( )
5B 3B | . o
K - . (2.2b)
39 3q® |
3C 3¢ 3B 5B
—5 + == = (2§ . 2B, (2.2¢)
aq® 3g® 3q” 3t o
: 2 2 - L
aq” 3q”® 2 24°q" ﬁsaq
’ 2 : 2 2
K _12%G ¥ o ¥, g2 CB 3 (2%26)
3gF 3> ziaq"’aé‘B aq” a8 stag®  atag®

Now éonsider the case when there are constraints. We de-
note by Q the set (g%, At )} with the convention QA*qa; 5 for
A=a=1,....N, and Q*zal, for A=i= =N+1, .. NHK Denoting by L(QQt)

the Lagrangian function associated with the system, the cor-

(*)In what follows we use the followz.ng? conventions: greek ... ?lijgizdvices,

Gy 8, Vy.va=l, ..., Nt latin indices 1y7sKyeo.=N+l, .., N+K: and - capital
latin ‘indices A,B,C,...=1,2,...,N+k, : ’



responding Euler-Lagrange vector is
- : i- T ] .8 - y . )
fos 22 By 0,40,007 + §,(Q.0t) . (2.3)

The functions EAB(Q,Q,t} and ﬁA(Q,Q,t) must satisfy the follow

ing conditions:

= | 04 A::

EAB = By . (@ a)i
BB%B _ 88,5 ’ (2.%)%
3Q aQ? ' : :
aC 3C 3B, . . 3B ' ;

.‘g " ""’?{ = 2( éB QC " _‘}E) , (2.4c)
3Q 3G 3Q ot

5 7 . a2 25 .
95,8 _ 3By _ ;(3 Ca _ o"C¢ y (2.4d)
3QC QA 250%50°  aQPad®

7 = 27 25 25 25
.8...C_% ~ EE.?. = ;1_ r(a CA - ) CB.5)°QC+ ? CA - ° CB 3 (2.46)
2Q aQh 273Q%0% 3% 7T atad®  atadt 7

According to equations (1.2) and (1.5) we <can assure that
L is the Lagrangian function for the constrained system:if we

impose that

. =
iy
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The above conditions express the fact that £(Q,,t) 1lead to
the equations of motion, equations (2.5), and the constraint

equations, equations (2.6) .
Equations (2.5,6) can be viewed as conditions to be im-

posed on the functions ﬁAB and 'CA. Using (2.3) these conditions

are:
BAB = BaB . (A=a,B=B;a,Bf1,...,N) (2.7)
BAB = 0, (A or B=N+1,...,N+K) (2,.8).
i OV
CA = C -A i (A=a=1,...,N) (2.9)
q
¢, = c, =0, (A=j=N+1,...,N+X) (2.10)

The problem now is reduced to the validity of the system .
(2.4a-e) restricted by the conditions (2.2Za-e) and (2.7-10).
Now, conditions (2.4a,b) are trivially verified while con

ditions (2.4c) require that

2
3 wi }

___i.9, (2.11)
33%24" |

C.
J = 0 .
q

3
— (2.12)

The conditions (2.4d) are verified with no aditional re-

' *
strictions ( ) while (2.4e) requires that

( )we used (2.12) and the fact the functions Ej(q,é,t) do not depend ex—
plicitly on A'.



oy, ay, 2.1
: R 1

aquaég Bqaaé&

a(’.‘,j* N an - o . . "(2’14)

Let us consider the meaning of these results, From equa-

tions (2.12) it follows that the functions C. are not depend-

-

ent on the generalized velocities, i.e., (.=

[ I

;a,t).  Equa-
tions (2.11) require the constraint functions to be at most
linear functions on the g’eheralized velocities, Equations (2.13)

~are the integrability conditions for the constraints wi(q,&,t)=0;
and they assure the existence of a set of functions gi(q,t)=
constant, such that wizéi. Finally, it follows from (2.14)

that gi=éi. - ‘ B |
Thus, there will exist a Lagrangian fﬁnction (and an as
sociatéd variational principle) for‘constrained systems ifthg,
constraint equations are linear functions of the generalized
velocities and can be reduced to the holonomic form. One can
go a little far and write an explicit form for the Lagrangian
function corresponding to these’cases. For instance, using the

procedure described by Engels[}ﬁngels(l975§§one obtains:

L =101+ 2. . . (2.15)




3- THE REDUCTION OF NON-HOLONOMIC CONSTRAINTS ' TO - THE HOLONOMIC

FORM.

From the results of the last section one concludes . that’
it is possible to construct a Lagrangian function and a corre
sponding action principle which lead to the equations of,. mo-

_tion and comstraint equations only for holonomic systems..

Let us analyze this statement in some detail. For snnpllcxt.y we
consider a system subjected to only one constraint equation

and write it as (*)
2 = X, (q) dq” = 0, (3.1)

and take N=3. The integrability condition for (3.1) is
- > _
X. ot X = 0 , X= (X,%,.X) (3.2)

If this condition is fulfiled then there exists a function
(an intégrating facfor), say M(q), such that MR is an exact
differential (**).

Geometrically the fulfilment of the integrability condi~

tions mean, for a given initial configuration, the existence

(*) The form of equation (3. 1) does not introduce any essential restriction
- in the present investigation.
(**) This conclusion also hold for N#3., We specialize for N=3 only for sim~

plicity.” The basi 'g results we will obtain are also valid for the gener=-
al case N#3. See! Forsyth, 1903].
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¥

of"ﬁcinis in configuration space which are not accessible to
the system by trajectories satisfying (3.1). The converse of
this statement is also true and is just Caratheodory theoren
(Buchdahl 1949)7. | " |

Now, suppose that condition (3.2) does not hokiand1mus_ﬂl
represents a non-holonomic constraint. What can be concluded
is the non existence of a single function, say ¢(g), such that
d¢=N(q)2, where N(q) is an integrating factor. Of course this
by no means imply that the equation Q=0 does not admit solu

tions. Actually, it is well known that if we choose an arbitrary |

function,
x(q) =0 (3.3)
it is possible to determine another function
¢{(g) = constant = ¢ ©(3.4)

such that (3.3) and (3.4) represent a solution for equation

(3.1). In fact, from (3.3) we can write
dx = 0 - (3.3.1)

so that when the form x{(q) is specxflea we can use (3. S)and
(3 3 1) to determine q, and dq3 or instance) in terms of the
others Q, and dq . After substituting these relatlons 1n (3.1)
the result will be a two dlmen51ona1 dlfferentlal equation

wich can always be integrated to obtain a solution of the
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 form (3.4). i?o: details séekifcxsyth,IIQOSI.)

| Now, ‘égéigning_ to'x(g} every possible forms we obtain
the whole Séf'of possibie“solutions. These solutions rep~"
resent a famlly of curves each one of them belng a s&lution
of equatxons (3 1) | .

This result admits a physical interpretation, namely ,
that onequnbholdﬁmdb  ¢6nstraint equation can be substituted
by two holonomic constraint equations according to the proce
dure descrlbed above. The question resides on the choice of
the function x(q) From the mathemat1c31 ‘point of view the
functlon X(q) is arbitrary but this is clearly not so from the
' phy51ca1 v1ewpo1nt. Among the whole set of mathematically
adm1551b1e functlons there is only one which mlnlmlze the ac
t1on functlonal the surface where the motion of the system
actually occur, Therefore, this must be the surface X(gq)=0 in
agreement with the basic postulate of Classical Mechanics, the
Least Actlon Pr1nc1p1e. Once this function is known, one can
guess which is the corresponding ¥(q) function for the prob-
lem at;hand. These functions will.behave like two holonomic
constraints which will substitute for the original non-holonomic
constraint therefore, it will be @oééible to construct ‘a new
Lagrangian function L for the system. This Lagrangian func-
tion L will contain all the phlSlC&lly relevant 1nformat10ns,
about the system 1nc1ud1ng the constraints.

One can argue about the reasons for - constructing  a
Lagrangian function after the motion of the system is known.

The point is that the form of the Lagrangian function L we



obtain is exactly the same as expressions (2.15) and it enables
us to construct a Hamiltonian for the system. Therefq;e, the
standard quaﬁtization précedures can be used., From our point
of view this result justifies the efforts to construct L.

In the following section wé apply this method to a well
known non-holonomic system, ?hg aim is to show how it works in
pratice and éall attentioﬁ tolgqme points where it can be sim

plifyed.

- »APPLICATION: A ROLLING DISK CONSTRAINED TO REMAIN VERTICAL

We consider the motion of a sham edge homogeneous disk of mass
‘m and radius R that rolls without slipping on .a perfectly
. rough horizontal plane and is constrained to remain vertical.
‘This is a well kﬁqﬁn problém, [Saletan and Cromer: (1970) ,
Neimark and Fufae§‘(1972) Whittaker (1936)] The generalized
coordinates are choosen as follow q, and q, are the projection
of the center of mass on the horlzon al plane, q, is the angle
between the plane of the disk and the q,-axe; q, is the angle
between a diameter of the disk and a vertical line.

~ The free Lagrangian function for the system isf

1 *2 ' -(4.1)

1 e, - .
L= Tm@ed)) + S1d5 L

where I, is the moment of inertia of the disk with respect to
an axe passing ‘irough its center and I, is the moment of in-

ertia with relation to a dizmeter.



- The comstraints for the system can be expressed by the

fellowing equations:

L

¢; = Rq,cosq, - él =0, (4.2)

¢2 Rqésmq3 - Q= 0 . (4.3)
‘1?mé°¢orresponding integ§ébility conditions are not satisfied ,
hence equations (4.2,3) represents two non-holonomic con-

straints. The equations of motion obtained by the standard

procedure described in section 1 are

ma; = Ay (4.4a)
ma, = Ay . o (4.4D)
"I{d3 = o, C(4.40)
1,4, = Alkcééq3+xzé$inq; L (4.8

which must be supplemented by the constraints (4.2,3). The

Lagrangian multipliers Alvané A, can be eliminated from these

2
equations, Omaobannskl=mRé3é4sinq3, k2=—mRé3é4cosq3. Using

these values we can rewrite equations (4.42,d) as

'dl = -Ré3é45inq3 - | (4.5a)
dz = R§3é4cosq3 (4.5b)

q, = 0 , (4.5c¢)

q, = 0 S (4.5d)
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Now, the solutions for equations (4.5a2,d) and (4.2,3) corre-
sponding to arbitrary initial data, a°=(q10,qzo,q3o,q40),

- . L] . .
40=(4;9:920°930°%0) > 37¢

-
r
~

S T B
q, = a*+R - 51n(q30t+q30) \ (4.6a)
430
= h-R qkocos(' t+ ) _ (4 . 6b)
A39
a3 7 30" 30 - S (4. 6c)
q, = Quottasg - (4.6d)

‘where a and b are two constants.

It is worthwhile to observe that the constraint equations
can in general be expressed in several different ways. For
tﬁe problem at hand it can be show [Saletan and Cromer,(1970) and

(f971)] that they can be represented by the (non linear) equa

tions

3 .2'\ 02 » |
$1 = aj*ay~Rqy =0, | - (4.72)

i

i

¢E: élsihq3-&;cosq3 =0, (4.7b)

‘It is also possible to express the constraints by a single

‘equation [Whittaker, (1936]]

¢ = éltahq3~§2 =0 . o (4.8)



We shall use this 1ate;

corresponding equations

- 15 =«

form to express the constraints. The

of motion are

mq, = xtanq3 . * (4.9a)
m‘q’z = =X , (4.9b)
"q'3"‘ 0, - {4.9¢)
.-q.l‘a: o

. o (4;§é5; 1

which must be solved taking into account equation‘(4.8). For the

Using this value

q, *

Lagrange multiplier we obtain

}\. = -mé1a3 - ‘

for X we can solve equations (4.9).Wé<ﬂmain

= avsin(gyoteayy) (4.10a)
930
= b+vt - ,.U- C'os(530t+q30) , (4.10b)
930
=4 traq o, (4.10¢)
30 30 _
Aot * o - (4.108)

where a,b,u and v are constants and no use has been made of

P & . . - e )
condition® )(4.8). Now, taking in account that condition -

we

(*)
$=0,

In order to obtain the explicit value for A we used =0

. instead of



get v=0. Thus, it follows from (4.10) that

T

:

(a;-a)? + (a,-D)% = ==

One can easily verify that u=Ré40 and .so the disk moves ‘with
thiszconstant speed in a circle of radius Ré&o/aSO cmﬂmred at’
(a,b) |Saletan and Cromer, (1971)]. It also follows from fhe‘
values of u and v that expre531ons (4.10a d) reduces ts the
solutions (4. 6a d) AR —

We now apply our method to tﬁig;pfoblemf;Pdr simplicity
we set a=b=0..From the solutions $(4.10a,d) it follows that
the motion of the system takes piécetbn the surface defined

by the equation

6(q) 2 qj* qytangy =0 ° o (4.11)

e err— ot

This surface must be taken as our x(q) functlon, emxm1m1(3.$

Now, following the procedure described in the last section we
obtain o

$(q) = qytccosqy = O L (4.12)
where ¢ is a constant which dépends on the initial data. . E-
gquations (4.11,12) are the holonomic constraints that sub-
stitute for the non-holonomic one given by equation (4.8).0n
thehggyer hand equations (4.11,12) are equivalent to :

EAT PR

q,-¢ sing,

it

[
Q

i(q) (4.11.a)

31

v(q) q2+cccsq3 = 0 (4.13)
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and we will use this last set of equations as the holonomic
constraints corresponding to the non-holonomic system we are
considering (*). Using these constraints we can write the

Lagrangian functions L for the system:
g g 3

= §.6i+5§) + %Il&g + %10&2;4 Ay (a,+c cosay) + A, (- csing,) .

(4.14)

Tﬁe Lagrangian fﬁﬁéfion 64.14) ééfriés all thé relevant
informations for the dynamical description of the  system.
Indeed, considering the Lagrange multipliers as additional
coordinates the Euler~-Lagrange equations that follows °° from

(4.14) are

mi, = A, ' (4.15a)
m'q'z =, ‘ | (4.15b)
I;d3-« -c(x;sing, + kzcoqu) . (4.15C)
T, =0, (4.15d)
q, + ccosqy, = 0 , | (4.15e)
q, - ¢ sinq3 = 0 . . (4.15%)

With the Lagrange multipliers given by

_ .‘-2 . - s o .
Ay = riq3 €C0Sq,y , - Ao meq, Sing,

b

(*)The set of equations (4.11,12) and (4,11.a,13) are, of course, equiva~
lents, We choose to work with the second set because this will avoid
many unecessary caleculations in what follows.
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the system of equations (A.ISa,d} reduces to

gy = - singy

.q'z = Ca.; COSQ3 *

.. (4.16)
q; = 0,

q..a = 0 L]

Solving this system one will arrive to the same solutions as

given by expressions (4.6a-d) with a=b=0 (*).

5- THE HAMILTONIAN APPROACH TO NON—HOLONOMIC.SYSTBM.

Once we have obtained the Lagrangian function associated
with a non-holonomic system we can develop a Hamiltonian for-
malism'. The procedure is essentially Dirac's theory of constrained -
systems |Dirac, (1964)] since now we Mnm a (singular) Lagrangian
functlon to describe the system. There is, however, some pe-
culiarities which we will clarify in what follows. For defi-

niteness let us consider a Lagrangian function of the form (1.6),

which we rewrite,

L(@.d,t) = L(@,d.8) + 3¢, () , (5.1)

(*)

As we bad pointe. out the value of the constant ¢ depends on the spec—

1f1cat10n of the 1n1t al data. For the data corresponding to solutlons

(4.6a-d) 1t can be verified that ¢ corresponds to the radius __,ﬂ of

S
the circle described by the disk. 730



where the functions'ki~are~Lag:ange multipliers and'¢i(q) are
the holonomic constraint functions which substitute for the
non-holonomic constraint of the original problem. Now, the key
step at this point is to tfeat the Lagrangian multipliers as
additional generalized coordinates, ﬁhus formally enlarging
the configuration space. The functions ¢i(q} can beconsidere&
as arbitrary functions in the sense that we_do.nét{nesd to con
sider them as constraints.:This information will fpllow aslpa
consequence of the theory. -

In order to pass to the Hamiltonian formalism  we. define
the momenta - canonnicaly conjugated to the generalized- coordinates

(which~now is the set (qu,qi Eki)): el

< oL _ oL o
Py T '57&' T TR Y 0 (542)
q 8q ‘
it

This last expression follows from the fact that there is no de-

pendence of L on the "velocities" A
Equations (5.3) are the primary constraints of the theory

and must be written as weak equations,
v“i X0 . . . (5.4)

Hence, the addition51 dégreé$ Q£ fffgédbm  We[Entrb6uCedff;are
constrained by these equation$. In}géﬁéi£I thiS:@ééﬁgﬂﬁ%ﬁiﬁhe
"coordinates" A' are afbitrary or otherwise determined and,

as we shall see, this will be the case.



. - ® 0y - -
H, = p,a L ;
= p,a% - L - At = H -2\, (5.5)
where H_  is the canonical Hamiltonian for the system . when

there are no constraints, i.e., the 'free Hamiltonian". Ac?,
_cording to Dirac theory we must add to the Hamiltonian (5.5)
a linear combination of the primary conmstraints (5.,4) and im
pose the consisténéy conditions that those constraints. are
| preserved in time. But as it is usual in theories where some mo-
menta are constrained to be zero(*) we can freeze the momenta
L considering equations (5.4) as strong equations.

Now, the consistency conditions for equations (5.4) lead

immediately to

¢, (@a O .' (5.6)

" and we recover the information that the functions ¢, are the
constraints of the theory.
We must continue the procedure and impose the time preser

vation of the (secondary) constraints(5.6). However, now  we

* ) . T . L I3 y - ) y » ~.
( )This is the case, for instance, in the canonical formalism of the gen-
eral theory of relat1v1ty where the momenta conjugated to the lapse and

shift functlons is constrained td be zero [Mlsner et al, (1973)] See
also |D1rac, (1,,0)]
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face a new situation., It happens Cai least for the cases we
have studied) that the second step beyond (5.6) leads to the
determination of the'functions At as functions of the ,qa’s
~and p,'s. At this point the prééedure must be stoped [Dirac
(1950)] . There will remain a definite number of secondary con
straints which are in fact second class. Now, what‘haé to. be
done is to use the Dirac brackets with respg;@’tb,tthevcon~_
straints and set them all strongly equal to zero. Therefofe;

" the Hamiltonian we are left with is the free canonical Hamiltonian

but the equations of motion are given in terms of Dirac brack-

-ets,

s _ ¥ - . -1
F = {F,HC} = {F,Hc} - {F’¢i}cij{¢j’ﬂc} (5.7)

~1 . . . ' -
where Cij denotes the elements of the matrix  inverse  of

C={l{o .0 M .

6~ THE HAMILTONIAN APPROACH FOR THE ROLLING DISK

We now apply the method described in the_;g;t_éaﬁimlto
the problem we dealt with in section 4. The Lagrangian func-
tion is given by expression (4.14),

L==[m@}+a3) + 1,d5 + 1,827 + q.0,* ag, - (6.1)

| S P

soperan nw P

where we used the notation



Ay %8s

i

Ry = g

q, * ccosqq = 61 ’

£
Pt
t

c sinq3 =0, .
The corresponding canonical Hamiltonian is
Hy = Ho - as58) - 449

where Hc is the free canonical Hamiltonian

= Lopiap e Lopy ¢ Lot L
2m ' 211 21,
The ptimary constrainfs are

with ™y defined by equations (5.3).

The consistency céhdifions'%iwo lead to

Imposing the time preservation of the secondary

(6.12a)
(6.1b)
(6.1c)

- (6.1d)

(6.2)

(6.3)

(6.4)

ké.Sa}

(6.5b}‘

-constraints



- 24 =

In order to wr;te thc Hamlltonlan equa 1ons of motion
we need the matrix C 1, inverse of C~d oy HI . Prom (6.8)

we obtain

mc? 2

A= det[i{e ,0. }[I -(----—-} #0 , (6.9)
.m I

A straightforward calculation leads to

©P3 1 ,c2 p T R
0 -—i—;- —(—;n—-""fi' cOS qs) ("f’]‘; Sans COSQs)
1
c’p : : 2 1 2
- 3 0 -Ci—-sinq3 €0sq; —C——*nf- sin qs).
m?I 12 1 1
1 1
Irmmz o
1 c? . : 0o 0
Qn Il cos qs) —CTI sinqy cosqs)
L g
4§~ smq3 cosqs) (—— + T; ‘sin q3) 0 N 'E%?'.

We now use the Dirac brackets with respect to the secondary
constraints {ei} and set all the constraints strongly equal

to zero. The equation of motion for an arbitrary dynamical

variable 1is given by

« mepl .
= {F,H } = . L{F,el}cosqs—{F,62}51nq3_;.
1 :
{(6.11)
It is an easy task now to show that (6.11) leads to the same

(62




equations of metion as obtained before, ~namely, equations

(4.16).

7- FINAL COMMENTS - :

In this ?aper we have stablsshed a procedure totxansfonn
a non~holonom1c system into a equx»alenu holonomlc svstem. A
| 51ngular Lagranglan funcLlon associated with the equivalent

holonomlc svstem 1s wrltten down based on the -knowledge of

the surface (a submanlfold of the conflguratlon space) where

e %'5&1
the motlon actual]y occur. As we mentloned before we bellev

“"r/‘-

that che efforts to construct such a holonomic system aﬂajus

ETod

LA

tlf}ed because, at leavt in pr1nc1ple, one can quant1ze such

syssoms using well known procedures [Dirac, 1964; Fradkin and

Vilkovisky, 1077]. |
We did not touch on the quesflon of constructlngwao ac

tlon functlonal for non holonomxc system which, as yet, is an

”?open problems( ) Our procedure does not lead to any specific
simplification of thls problem. However, we expect ‘that a
deeper ana1v51s mxght shed some llaht in the dlrectlon to be
taken in crder to overcome thls questlcn.

Flna‘1y~ we mentlon that our procedure does not s\are

~any relation with the procedures proposed long ago by 3 W

Campbell and others. (See rCampbell 1936] and “references
there in).

N 17
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(*) For details on the exten51on of the Least Action Prxncl%%e to non~

holonomic systems see the excellent paper by L.,A. Pars, |Pars, 195@]
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