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ABSTRACT

Within a simple real space renormalization group frame-
work, we discuss the phase diagram of a g-sate Potts ferromagnetic
system constituted by two semi-ihfinite bulks separated by a planar
interface. Quenched bond dilution has been assumed in the bulks as
well as in the interface. The system exhibits percolation-like
phenomena which generalize the standard d=2 and d=3 ones. Also,
competition between bulk dilution (which enhances surface magnetism)
and interface dilution {(which depresses surface magnetisﬁ) is

observed.

Key-words: Surface magnetism; Potts model; Critical phenomena;

Percolation.
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I INTRODUCTION

Surface magnetism is a subject which presents great
richness, from the theoretical and experimental standpoints  as
well as due to its important applications (catalysis, corrosion);
seea Refs.[1,2]'f9r recent reviews. Situations such as the free
surface (semi-infinite bulk) and the interface (su:face between
two semi-infinite bulks, which generalizes the free surface case)
have been theoretically considered. Also several models (e.q.,spin
1/2 Ising, g-state Potts, spin 1/2 anisotropic Heisenberg, mixed
ones) have been assumed. However pure systems (i.e., ordered, non
diluted} have been almost exclusively considered. The first attempt
(to the best-of our knowledge) concerning the effects of (bulk)

NE

dilution is due to Ferchmin and Maciejewsk . Very recently, real

space renormalization group (RG) work addresses this type of effects:

1[4], and

bulk dilution for the free surface spih 1/2 Ising mode
surface dilution for the interface Potts model[sl within Migdal-
Kadanoff RG frameworks (see [6] and references therein), and free
surface dilution for the q=1,2 Potts model within a RG which uses

a sophisticated cluster and yields quite accurate results[TI.

In the present paper we consider, within a Migdal-Kadanoff
RG approach which generalizes that presented in {6}, a quite large
model, namely the interface g-state Potts ferromagnet with quenched
bond arbitrary dilutions in both bulks as well as in the surface
between them; the results obtained in [4,5] are here recovered as

particular cases. We mainly address the phase diagram, although the
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various critical universality classes associated with the problem
emerge as well, Interesting bond-percolation-like phenomena are
observed, as well as competition between bulk dilution (which
enhances surface magnetic order) and surface dilution ( which
depresses it). In section II we introduce the model and the for-
malism, and in Section III we present the main results, conclud-

ing in Section IV,

IT  MODEL AND FORMALISM
We consider the following Potts Hamiltonian:

H=—qu
<i,j>

ijsoi'aj (Ui = 1'2'00-' q;Vi) (1)

where Jij equals Js(Jgao) if both i and j sites belong to the

(1,0,0) interface of a (first-neighbouring) simple cubic lattice,
and Jij equals J130(J2%0) if at least one of i and j sitesbekxgg
to the bulk-1 {bulk-2). Furthermore, the coupling constants Jij
are assumed to be random variables satisfying the following pro

bability laws:

P(T) = (1-p )é(T,) + pSG(Js-J:) (2.a)
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P(3.) = (1-p)6(F) + p 6(F -J) (r=1,2) (2.b)

with 0<p_, p,, P, ¥ 1 and J:, Jg, Jgao. The pure case corresponds

to p =p,=p,=1, V(J:,J:,Jg)f The free surface case corresponds to,
Say' Jg=0' v(psﬂplfpsz:!Jg’ Qr pz=of v(psfplfJ:;J:;Jg)n

Before going on, let us introduce a convenient variable

(thermal transmissivitgla]):

: _ -qJ,./k
14+ (g=1) ¢ +1°'B

1 - @

ot
e

i — <[0,1] (3)

Egs.(2) can be rewritten as follows:

P (t.) = (i-p)é(t,) + p S (t ~t]) (4.a)

P_(t ) = (1—pr)6(t:) + p 8lE_=t))  (r=1,2) (4.b)

To treat the model defined by Egs.(1) and (2) we shall

use the RG approach indicated in Fig.1 with the renormalized pro-
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bability laws
PL(t ) = (1-p;)6(ts] + p;a(ta-t:') (5.a)
PL(t.) = (1-pl)s(t ) + p;sttr-t;') (r=1,2) (5.b)

where (p}, P!, P}, t:: t:', t’') are parameters to be determined.

The probability law 58 associated with the large cluster
of Fig.1(a) is given by

3 3 3
P (t.) = I b 3
88 n8=0 nl=0 nsz ng nl_ N

3-n 3n 3-n 3n . ad=n 3n
| 2 2
« =p)) ®p, * (-p) 'p ' (1-pd) % p,
x §{t -t (n_ /0, ,n,0, (6)

where
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-.5_
1
n n n
1-¢03 8l 403 LE o qogod 2
1- 8 3 1 3 2 5
0 - 0 _ 0
t(ns'n1'n2)§ 1+(q-1)ts.- 1+(q 1)_t1 T+(g-1)t)" | (7)
1-¢23 n’,- 1e0® [T g0 |72
1+(q=1) 5 1 2

1etg-0e [ [1e@ne?] [1e@ne’

with ns;nl,n2=0,1 ;2;3.

Similarly, the probability law P, associated with the large cluster
of Fig.1(b) is given by |

9 9-n
RIS ) -pd”  pI® (e -t M) (8)
where
Il
1-t§3
Te
(n) 1+(q-1)t:§_
t, z e = (n=0,1,...,9) {9)
1-¢93
' i
1+(g-1)

| 1+(q—1)t:3

The probability law P,(t,) associated with bulk-2 is completely
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analogous to §l(tl)y

It is important to stress that the distributions 55,51
and ?2 are much more complex than the corresponding binary ones
P;,P; and P;. Consequently the representations indicated in Fig.
1 involve an approximation. This (binary) appreximation could in
principle be avoided by leaving the distributions free to evoluate,
through successive renormalization steps, towards their fixed
forms. However, it is well Emmm that the "binary approximation"
behaves quite satisfactorily in a great variety of similar systems.
Consequently we shall adopt it for the present discussion. To
determine the parameters p!, p!, p}, t;',ti' and t' we impose

the lower momenta to be preserved, more precisely

<t >

s P; 8 Ps (10)
<t:>P, = <t:>§ {(11)
8 s
<tr>P' - <tr>§ (r=1,2) (12)
T r
<ti>P' = <t:>§ (z=1,2) (13)

<t >m
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-7
Consequently we have
: 3 3 3 -
prtl = I z E 3 3 3

n n n
= = 2
n, 0 n, 0 n2=0 8 1 _

3-n 3-n, 3-n,
x (1-p))  ° pd% (1-p}) " pI™ (1-p)) " p™

(ns rn1 :nz)

x t = Fs(psfplgpz't:'t:'t:) (14)
2 3 3 3
3 3 3
p' (¢%') = & L I
s n_=0 n;=0 n,=0 {"s/ |T1f |72
8
3-n 3-n 3-n

x

(1-p2) 8 pznﬂ (1-pi) ! pfnl (1—p2) 2 pinz

2
{(n_,n. ,n,)

3n _{n) _ 0 _
e EF_(p,t}) (1,2 (16)
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9 9en 2
pp (6212 = T (2) (1-pd) PP (e,
n=0
And finally
D o2
Pg = Fs/Gs
£? = GS/FS
. 2
pr Fr/Gr {r=1,2)
t)' = G_/F, (r=1,2)

(r=1,2) (17)

= 0
= Gr(pr.tr)

(18)

{(19)

(20}

(21}

Equations (18-21) completely determine the RG recursive relations

in the 6-dimensional parameter-space (ps,pl,pz,t:,t:,t:) ( or

equivalently in the (kpT/J7, J:/J:, I /37, P,P,+P,) space). The

RG flow diagram in this space fully determines the complex phase

diagram (hypersurfaces in a 6-dimensional space) as well as

the

corresponding critical universality classes. In the next section

we present convenient cuts of this phase diagram and its evolution

with q.
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III RESULTS.

We have chosen as a prototype the free surface (i.e.,
p,=0 and/or J2=0) pure {(i.e., ps=p1=1) Ising model (i.e., g=2):
its RG flux diagram 1is indicated in Fig.2. It exhibits three pha
ses, namely the bulk ferromagnetiec (BF; both bﬁlk and surface are
magnetically ordered), surface ferromagnetic (SF; the surface only
is magnetically ordered) and paramagnetic (P; magnetically fully
disordered system) ones. The P-SF critical line belongs to the
d=2 universality class (characterized by the t,=0 semi-stable
fixed point); the SF-BF critical line belongs to the d=3 univer-
sality class (characterized by the tz=1 semi-stable fixed point);
the P-BF critical line belongs, for the surface magnetization,
to a non trivial universality class (characterized by the 0<tg,
t9<1 semi-stable fixed point) which differs from both d=2 and
d=3 ones; all three critical lines join in multicritical point
which constitutes by itself a new universality class (characte-

- rized by the unique fully unstable fixed point). This RG flux
diagram evoluates.smoothly;with g. The influence of bulk dilution
is to shift the "vertical" asymptote to the right, therefore
enhanceing the SF phase; for p1=p2D (d=3 bond percolation thre-
shold) the asymptote attains the t3=1 axis. The influence of
surface dilution is to éhift the "horizontal" asymptote to upper

P (=2

values of tz, therefore depressing the SF phase; for ps=p§
bond percolation threshold) the tg=0 point of the "horizontal"

asymptote attains the EZ=1 axis., Simultaneous bulk and surface
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=10~

dilutions move both asymptotes, thus appearing competition con-
cerning the SF phase. For q high enough, surface and bulk dilu-
tion yield new non trivial critical fixed points, thus driving the
system into new (random) universality classes. This fact is con-
sistent with the Harris criterion[glg however the main purpose of

the present work being the phase diagram, we will not study the

details of this type of crosgsover.

The effect of surface dilution (with p,=1) in the T vs.
J:/Jf representation is illustrated in Fig.3 (TgD denotes the d=3
Ising critical temperature)}. Note that the SF phase exists even
below the d=2 percolation threshold {(i.e., for p<p§D), a new per-
qolation-like threshold now appearing. This effect can be referred

as "bulk-assisted surface percolation”.

The effect of bulk dilution (with p8=1) in the T vs.
J:/Jf ;epresentation is illustrated in Fig.4. The effect of simul-
taneoue surface and bulk dilutions i1s illustrated in Fig.5, The
influence of P, and p, on the phase diagram in conveniently syn-
thetized by looking at the way they monitorize the location J:/Jf

of the multicritical point: these are depicted in Figs.ba,b,c.

We have represented in Fig.7 the g-evolution of the
%*
pure case (ps=p1=1) phase diagram. The g-dependence of J /Jf

appears in Fig.9 (on thg J?/J?=0 plane).

_ Let us now turn our attention onto the interface case
(both Jf and J: non vanishing).'A typical phase diagram is indi-
cated in Fig.8, where BF12 means that botk bulks as well as the

interface are magnetized, and BF1 refers to the fact that only
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bulk-1 (and of course the interface) is magnetized, bulk-2 now
being paramagnetic. The location of the multicritical point is

indicated in Fig.9 for the pure case.

Iv CONCLUSION

The quenched bond-diluted double-bulk Potts ferromagnet
is a quite complex system, whose phase diagram is almost comple-
tely unknown. At the T=0 limit it recovers the standard d=2 and
d=3 percolation thresholds (see Refs.[10-12] for the simple cubic
with (1,0,0) interface values). Within a simple real space renor-
malization group scheme we have calculated it (and also obtained
some information on its various universality classes). We belileve
the results are qualitatively reliable (the checks are satisfacto
ry whenever possible), althougﬁquantitatively somehow rough. This
is so whenever we are dealing with second-order phase transitions
(i.e., qiqanJ, the framework not beling appropriate for the des-
cription of.first-order phase transitions. The g-evolution of the
phase diagram has been followed, and various interesting phenomena
have been exhibited. Among them we must quote the competitive trends
of bulk dilution, which enhances surface magnetism, and surface
dilution, which depresses it (see Figs.6a,b,c). We would be very
happy 1if the present work could act as a guide to the choice of
convenient real systems, and stimulate further (and quantitatively
more pfecise) theoret;cal and experimental work on surface magne-

tism in diluted and/or mixed magnetic substances.
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CAPTION' FOR FIGURES.

Fig,

Fig.

'Fig.

Fig.

Fig.

Fig.

1 - RG transformation ({(the large clusters are renormalized

2 -

into the small cnes); O and ® respectively denote ter-
minal and internal sites. (a) interface RG transforma-
tion; jb) bulk-1 RG transformation (that of bulk-2 is

completely analogous).

Pure (p5=p1=1) Ising model (g=2) for the free surface
case {p,=0 and/or t‘:=0): RG flux diagram. ] , @ and o
respectively denote the trivial (fully stable), criti-
cal (semi-stable) and multicritical (fully unstable)
fixed points. P, BF and SF respectively denote the pa-
ramagnetic, bulk ferromagnetic and surface ferromagne-~

tic phases., t: and t? are transmissivities,

9=2, p,=1 phase diagram for pP,=0 and/or Jf=0, and typi-

cal values of Pg-

gs2, ps=1 phase diagram for p,=0 and/or J:=0, and typi-

cal values of P,

d=2 phasge diagram for p,=0 and/or J:=0 and typical values

of P =P,

Concentration-dependence of J:/Jf (location of the mul-
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ticritical point) for the q=2, p,=0 and/or J$=0 model.

a) pg,=1; b) p,=1; ¢) p_=p,

Fig. 7 - g-evolution of the pure (ps=p1=1) model for the free

surface case.

Fig. 8 = g=2, p1=p2=ps=1 dilagram for the double-bulk

J?/Jz=1/2 case.

Fig. 9 -~ g-evolution of the location of the multicritical point
" as a function of Jf/Jf for the double-bulk p1=b2=ps=1

model.
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FIG. 2
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