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ABSTRACT

We consider two semi-infinite spin 1/2 Ising media (:es-
pectively characterized by the ferromagnetic coupling constants
J, and Jz)separated by a spin 1/2 anisotropic Heisenberg inter-
face (characterized by a ferromagnetic coupling constant Jg,
and by an anisotropy'r|€[0,1] in spin space; n=1 and n=0 res-
pectively correspond to the Ising and isotropic Heisenberg
limits). Within a real-space renormalization-group framework,
we discuss the full phase diagram; this diagram exhibits, be-
sides the paramagnetic phase, three physically different or-
dered phases, namely the déuble—bulk, single-bulk and surface
ferromagnetic ones. We also analyze the various universality
classes appearing in this problem, and determine, in particu-
lar, the existence of a new high-order multicritical point

associated with the J1 = J2 case.

Key-words: Heisenberg; Surface magnetism; Magnetic phase dia-
gram; Renormalization graup.
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I - INTRODUCTION

During the last decade, surface magnetism has raised
increasing interest, both because of its applicaticns and its
intrinsic richness (see Ref [1] for a recent review).The most
commonly studied problem is the free surface one, where the
system is assumed to be a semi-infinite bulk [ 2=111 | However
this problem can be generalized into a richer one, namely the

interface (or defect) problem [12]

, where two semi-infinite
bulks {(not necessarily equal) are separated by a surface
whose nature is in general different from both bulks.

In a recent paper[13](referred hereafter as paper I) an
interesting system has been discussed, namely a semi-infinite
spin 1/2 Ising ferromagnet, whose free surface is a spin 1/2
anisotropic Heisenberg ferromagnet. The approach has been a
real-space renormalization-group (RG) one using Migdal-
Kadanoff-like-clusters {(diamond-like h;erarchical lattices),
and the guantum nature of the surféce has been taken into
account within a convenient procedure recently introduced[14l
The results have been quite satisfactory, and compare well
with other theories available in the literature for the pure
Ising limit.

In the present work we follow along the lines of paper
I, and generalize the treatmeht in order to cover the inter-

face problem. We shall see that, in spite of the simplicity

of the clusters, a transparent overall view of the criticality
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of the system emerges.
In Section II we introduce the model and the RG formalism;
in Section III we present the results, concluding finally in

Section IV.

II - MODEL AND FORMALISM

We consider a spin 1/2 simple cubic lattice system cons-
tituted by two semi-infinite Ising bulks, separated by a{1,0,0)
interface (square lattice) with a more complex magnetic nature,
namely an anisotrbpic Heisenberg one (see Fig. 1). The Hamilto

nian is given by

_ X % Y oY z z
(H’_ <i‘::j>Jj [(1- ”i;”c oy + 0] O )+0i oj] {1)

where <i,j> run over all pairs of first-neighboring sites, and
the ¢'s are the standard Pauli matrices; (Jij' nij) equals (J,,1)
on one semi-infinite bulk, (JZ' 1) on the other, and (J&,r n) on
the separating interface (J1, Jz, Jg > 0 an@ n€[0,1); n=1 and
n=0 respectively correspond to the Ising and fsotropic Heisenberg

limits). It is convenient to introduce the following variables

Ry = Jr/k;BT (r = 1,2,8) (2)
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-3—
tr = tanh Kr €{o0,1] {r = 1,2,8) {3)
1+t
in S
JS 1-tS
& = Jo - 1 5 —= 1 (4)
1 1+t1
in
1-t

where kB and T respectively are the Boltzmann constant and the
temperature.

It is intuitive that such a system will undergo several
phase transitions.First of all, the bulks 1 and 2 will present

3D(1) 3D

para-ferromagnetic phase transitions at Tc =n J1/kB and

TiD(ZJ = n3DJ2/kB respectively, where n3D is a pure number
(n3D = 4.511 [15]). Furthermore, if A 1is sufficiently large

(A > Ac (J2/J1,n)), the surface is expected to retain a ferro-

magnetic order even when both bulks have lost theirs, i.e., up

s s 2D _ 2D
to T (JS/J1,J2/J1,n). In general T, 2 T, = n" (n)Jg/ky

3D{1)

- when A » o)

= ¥ m/m?P1 21PN (v 0P () /0?P1a T

nZD(n) is a pure number that monotonously increases from 0 to

(14}, TS will equal 2P i

2.269...when n increases from 0 to 1 c

and only. if J1=Jz=0 and JS>0. With respect to ﬁc' amean field

argument (4Jo+J +J, = 6J,, assuming J,< J4) vields ﬂc=(1-J2/J1)/4,
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¥ n, which we shall see is an extremely crude approximation.
To discuss the criticality associated with Hamiltonian

(1) we shall proceed as follows. The RG equation for the bulk

1 will be given by the recursicn indicated in Fig. 2(a)[11]

[16]

!

therefore

1-t} 1-t3 1\ °
T+ty T3 (5)
1 1+t.1

where ti = tanh Ki. Eq. (5), together with Eq. (3), immediately

provides the explicit recursion

K} = f(K1) (6)

Analogously we have
Ké = f(Kz) (7}

To obtain (K, n') as function of (Kg,n,K,,X,) the opera
tions are considerably more complex (but follow closely those
indicated in paper I) and are indicated in Fig. 2(bi. We first
. consider a two-terminal graph made by a linear chain of four
spins and three (Kq,n)-bonds, and note (Kg, ng) the equivalent

parameters of a single bond graph (s stands for "series");these

parameters have already been calculated in paper .1 (see also
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Ref. [14]), and therefore the functions Kg(Ks,n) and ng(KS,n)

are explicitely known. We then consider the same linear chain

graph but now made of three (K1;1}-bonds; we note (K§1),1) the

equivalent parameters, and obtain[16]

{1)
3

arctanh [{tanh K1)3] (8)

Analogously

K§2) arctanh [(tanh K2)3] {9}

Finally the parameters (K , n') we are looking for are given
by

kL = 3K (Kg,m) + K{V (R + R{Z iR, (10)

5 s (1} (2}

Kg

where we have used the parallel-array composition law (which
for the present guantum subgraph of Fig. 2(b) represents an
approximation: see paper I).

Egs. (6}, (7), (10) and (11) (together with Egs. (8)
and (9)) completely close the problem, as they determine  the
RG flow in the (K1,K2,Ks,n) space (or,equivalently; in  the

(t4,t5,tg,n) space).
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III ~ RESULTS

The present RG admits a few interesting invariant subspaces

in the (t1,t2,ts,n) space, such as the Ising limit { n=1.) .,
the tsotropic Heisenberg limit (n=0), the pure surface case
(t1=t2=0), the free surface case (t2=0, or equivalently t1=0)and

the equal bulk case (t1=t2), as well as the tS=1, t1=1 and t2=1
planes.
The flow diagram associated with n=1 is indicated in Figq.

3. It exhibits:

i) Five fully stable fixed points, namely (t1,t2,ts) = {0,0,0)
(corresponding to the peramagnetic (P) phase), (1,0,1) (bulk-
1 ferromagnetic (BF,) phase), (0,1,1,) (bulk-2  ferromagnetic
(BFZ) phase), (1,1,1) (bulk-1-2 ferromagnetic (BF12) phase),and

(0,0,1) (surface ferromagnetic (SF) phase);
ii) the following semi-stable fixed pointsf: (tB,O,‘i} (with tB = 0,340%),

(O!t'B!1)I (tBrtBr1)r (1rtBr1); (tB,‘I"I)' ‘tB’O'tS‘l) (With ts1

= 0.1229), (o'tB'tS1)' (tB'tB'tS12) ({ with t 2 = 0.3401 ),

S1

(0,0,tg) (with tg = 0.6180; S point), (tg,0 (with t

rtspq) SB1

= 0.5475; SBy multicritical point), (O:tBit (SB2 multi-

sp1)

critical point);

iii) the fully unstable fixed point (tgrtgitgpq,) ( with tepia

Z 0.3720), hetreafter refered as the SB12 super nmulticritical

point;
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'iv) six different universality classes, namely the three~-dimen-
sional {(3D) one, associated with the bulks guantities (e.qg.,

whatever  he the values of J2/J1 and Jg/J1, the deep magne-

3D(1)_g) 877

tization in bulk~1 vanishes as (TC

; analogously the

3D

3D(2)_T)B ), the

deep magnetization in bulk=2 vanishes as (TC

free surface one, associated with the interface quantities

for J,/3, Z 1 and A < A, le.g., the interface magnetization

B B
3D(1)-T) 1 if J, < J,, and as (Tgn(z)—T) LY

vanishes as (Tc 2

J2 > J1), the equal bulk interface one, associated with the

interface guantities for J2/J1=1 and A < Ac (e.g., the inter
gEB

3D(1) _qpy 1

face magnetization vanishes as (T

}, the surface-

bulk multieritical one, associated with the interface quanti

ties for J2/J1 z 1 and A=h (e.g., the interface magnetization

SB ,
vanishes as (TiD(T)—T)B if J

SB
3D(2) B8
2 < J1, and as (Tc | ~T)

if Jy, > J1), the surface-equal-bulk super multieritical one,
associated with the interface guantities for J2/J1=1 and

A = ﬂc (e.g., the interface magnetization .vanishes as

3p(1) g EB
(Tc -T) ), and the two-dimensional (2D) one,associated

with the interface quantities for J2/J1 Z 1 and ﬂ:>ﬂc (e.qg.,

2D
the interface magnetization vanishes as (Tg—T)B ).

If JT= 0" and/or J,

ponding to 0 £ n < 1 are the same as those for n = 1, because

# 0, the universality classes corres
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the single (double) Ising bulk connected to the interface, dri-
ves the whole system into the Ising symmetry, i.e., n = 1, A
different situation occurs if J1=Jz=n=0: in this case the inter
face becomes a pure two-dimensional isotropic Heisenberg system,
thus exhibiting the corresponding universality class, which is
different from all six universality classes mentioned above.All
these facts have been numerically verified within the present RG.

In Fig. 4 we have represented, in the (t1,ts) space, the
phase diagrams corresponding to both free surface (Fig. 4(a) )
and interface (Fig. 4(b)) cases; the critical line between the
P and SF phases has been indicated for typical values of n .
Typical phase diagrams have also been represented, in Fig.5, in
the (T, A) space. Finally, in Fig. 6, we have indicated Ac
(value of A above which the surface magnetic order can subsist
even in the absence of bulk order} as function of n and JZ/J1'
For n = 1 and J2/J1=0 we obtain A, = 0.?36, which compares
reasonably well with the series result 0.6 * 0.1[31 and with
the Monte Cario one 0.50 * 0.03[10] (the mean field approximation

result is 0.25).

IV - CONCLUSION

We have considered an anisotropic Heisenberg interface
between two not necessarily equal semi-infinite Ising simple
cubic bulks. The criticality of this system has been discussed

within a real-space renormalization-group which uses quite simple
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Migdal-Kadanoff-like clusters (diamond-like hierarchical lat-
lices); as far as we know, this is the first-time such a discus-
sion is performed. Great richness has been exhibited in both the
phase diagram (four physically different phases are present,
namely the paramagnetic, the double-bulk, the single-bulk and
the surface ferromagnetic ones) and with respect to the univer-
sality classes (seven different classes are present, namely the
two-dimensional isotropic Heisenberqg one, as well as six Ising-
type: the standard two-and three-dimensional ones, the free-sur
face and equal-bulk~interface critical ones, the surface-bulk
multicritical one, and the surface-equal~bulk super multicriti-
cal one). It is worth stressing the appearance, when the bulks
are equal among them, of a high order multicritical point.

We have.given special attention to the calculation, as
fuhction of the spin anisotropy n and the ratio J2/J1 {relative .
strength of the coupling constants in both bulks), of the wvalue
of the ratio JS/J1 (relative btrength of the surface and bulk-1
coupling constants) above which surface magnetic order can exist
even if it has disappeared from both bulks (see Fig. 6).For the
particular free surface (J2/J1=0) Ising (n=1) case, we have
obtained, for the just mentioned critical value of the ratio
Jo/3,, 1.736, to be compared with the series-value 1.6 * 0.10°]
and the Monte Carlo value 1.50 # 0.03[101, the mean field
approximation value being 1.25, For the interface equal bulk
(J1=J1) Ising (n=1) case we have obtained 1.130 for this ratio;
we are not awaré éf any other numerical proposal excepting that

of the mean field approximation which yields 1.
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CAPTION FOR FIGURES

Fig- 1 -

Fig. 2 -

Fig.3 -

Fig. 4 -

Fig. 5 -

Fig. 6 -

Two semi-~-infinite simple cubic bulks separated by a

square-lattice interface (dashed bonds).

RG transformation for the bulk (a) and the inter-
face (b). The types of bonds coincide with those of

Fig.1. o© (e} denotes terminal (internal) nodes.

n =1 RG flow diagram in the (t1, t,, ts) space. The

2
paramagnetic (P), bulk-1 ferromagnetic (BF1), bulk-
2 ferromagnetic (BF,}, bulk-1-2 ferromagnetic (BF12)
and surface ferromagnetic (SF) phases are indicated.

B (®) denotes fully stable (unstable or semi-stable)

fixed peoints.

Phase diagrams, in the (t1, ts) space, for typical
values of n: (a) free surface ‘case, (b) equal bulk

case.

T - A cuts of the phase diag¥am for typical values
of n and J2/J1: (a} free surface casé, {(b) inter-

mediate case, (c¢) equal bulk case.

4, as a function of n and J2/J1: (a) for typical

values of J2/J1, (b) for typical values of n.



o‘ooooooooooooo tc e 09 0

~
hY
.'
[Tg] R
2 o |
e 1
% L I
T ° . _
B 'y ® |
= ® I
5 . !
C . !
L ] ® “
* ® ™ "
° aoo
° oo.ooooooooo
e .. ]
° o !
® 1
® o~ b
° -~ @ I
i N ® “
~ @ N :
1_. ® .. @ )
° e _
[ ) * /_
... [} II_
sof) e ee e 0400 ™ oooooooo#
s ® ® 1 s
® (
L 4 ® ®
* °
oo o
L ®
™
Y [ ]
®
., b
s ®
e®

L
N
i

X o_o_oooooo of’

J,,!)

.._.,'1___

FiG. 1



CBPF~-NF-028/85

=12~

(a)

FiG.2



CBPF-NF-028/85

FiG 3




CBPF-NF-028/85

-] 4

¢0

3 O




Y

CBPF~NF-028/85

. [ R e -C
AP

=05

-

.---l-"' -

PR hot

oV



CBPF-NF-028/85

-16-

In/2p

9 9id

I=h

(9)

A

<o

1= 0/ %

go=lrsep

(P)




CBPF-NF-028/85
-17-

REFERENCES

1 — K.Binder, "Critical behaviour at surfaces" in "Phase Transi-
tion and Critical Phenomena", ed. C.Domb and J.L.Lebowitz,
Vol 8 (Academic Press, 1983)

- D.L.Mills, Phys.Rev. B 3, 3887 (1971)

K.Binder and P.C.Hohenberg, Phys.Rev. B 9, 2194 (1974)

- K.Binder and D.P.Landau, Surf.Sci. 61, 577 (1976)

wn b [ [0
!

- T.W.Burkhardt and E.Eisenriegler, Phys.Rev. B 16, 3213 (1977);
Phys.Rev. B 17, 318 (1978)

6 - M.Wortis and N.M.Svrakic, IEEE Trans.Magn. MAG.18, 721(1982)

7 - R.Lipowsky, Z.Phys. B 45, 229 (1982)

8 - I.Tamura, E.E.Sarmento, I.P.Fittipaldi and T.RKaneyoshi,
Phys.Stat.Sol.(b) 118, 409 (1983)

9 - T.Kaneyoshi, I.Tamura and E.F.Sarmento, Phys.Rev.'B 28,
6491 (1983)

10 - K.Binder and D.P.Landau, Phys.Rev.Lett. 52, 318 (1984)

11 - C.Tsallis and E.?.Sarmento, to be published in J.Phys.C

12 - P.M.Lam and Z.Q.2Z2hang, Z.Phys. B52, 315 (1983) and B 55,
371 (1984); L.R. da Silva, U.M.S.Costa and C.Tsallis,
preprint (1985).

13 - U.M.S.Costa, A.M.Mariz and C.Tsallis, to be published in
Phys. Rev. B.

51, 145 (1983) and 51, 616 (1983); A.M.Mariz, C.Tsallis
and A.0.Caride, to appear in J. Phys. C (1985).

15 ~ J.Zinn~Justin, J. Physique (Paris) 40, 969 (1979).

16 - C.Tsallis and S.V.F.Levy, Phys. Rev. Lett. 47, 950 (1981).



