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SUMMARY

This text is devoted to the study of a holomorphic classifi
cation of locally convex spaces, of topdlogy on spaces of  holo-
morphic mappings, of holomorphic factorization, and of holomorphic
continuation. Some open problems in these aspects are also indi-

cated.

Key-words: Holomorphy; Holomorphic classification; Topology on
holomorphic mappings; Holomorphic factorization; Holo
morphic continuation.
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0 INTRODUCTION

Holomorphy or Complex Analysis in any (finite or infinite) di-
mensions has undergone a progress in the past 20 vears or so which
led to the publication of some expository books in 1969 [27], 1970
[35), 1973 [34], 1974 (8], 1980 [14], 1981 [11], 1982 (9], 1984 [22],
1985 [51, (7], (18], {36] and 1986 [26]. In these lectures we pro-
pose only to describe some problems ih Holomorphy in an as clear
as possible way dealing with the following aspects: a holamorphic
classification of locally convex spaces; topology on spaces of
holomorphic mappings; holomorphic factorization; and holomorphic

continuation.

1 TERMINCLOGY AND NOTATION

1.1 Topological vector spaces

All topological vector spaces considered here will be com-
plex and locallf convex. If o is a seminorm on a vector space E,
we denote by Ea the vector space E seminormed by a, and by E/a=
= Ea/a-l(O}'the associated normed space. We let CS(E) be the set
of all continuous seminorms on a topological vector space E. We
represent by . wE the weak space associated with a topological vec
tor space E, that is E endowed with its weak topology o (E,E'). We
refer to Kothe [20], Horvath (17] and Jarchow [19] for the termi
nology and ﬁotation, particularly for the concepts of é Fréchet
space, semi-Montel space, Montel space, Schwartz spwe,-l@ﬂé space,
DFM space (Dual of a Fréchet-Montel space), and Silva space or

equivalently DFS space (Dual of a Fréchet-Schwartz space).
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1,2:Holomorbhy

Let E and F be locally convex spaces. We dehote by G%EE;F)
the wvector space of all m-homogeneous polynomials of E to F .for
me€ N. If U is an 6pen nonvoid subset of E, we let %(U;F) be the
vector space of all holomorphic mappings £ of U to F, A mapping
f of U to F is said to be finitely holomorphic when its restric-
tion £| (UNS) is holomorphic for every finite dimensional vector
subsace S of E intersecting U, where S has its natural fopology. We sha11 use
on égﬂLF)1ie oqumtﬁqpﬂ1topohxw'Qg)beskkﬁ other tonologies ﬁ%}and‘g.
“hen T =C, we shall use the simpler notations @"t) and M(U) to denote
F(mE';CI!) and%(U:ﬂ:). We refer to Dineen [11l], Colombeau [9], Bar
roso [5], Chae [7] and Mujica [26] for the terminology and nota-

tion, particularly holomorphic mappings, and the topeologies ﬁo,

'Q-m and ‘@6.

2 2 HOLOMORPHIC CLASSIFXICATION OF LOCALLY CONVEX SPACES

Let E and F be complex locally convex spaces, U be an open
nonvoid subset of E, and a&(U;F) be the vector space of all holo

morphic mappings of U to F.

Definition 1. A given E is a holomorphically bornological

space if, for every U and every F, we have that each mapping
f:U-+F belongs to &(U;F.) if (and always only if) £ is finitely

holomorphic, and f is bounded on every compact subset of U.

Remark 2. Every holomorphically bornological space is a boxr
nological space {(see [20], [17], [19] for the concept of a borno

logicai space) .
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Definition 3. A given E is a holomorphically barreled space

if, for every U and every F, wa have that each collection SE <
aﬁ(U;F) is amply bounded if (and always only ifLaEis bounded on

every finite dimensional compact subset of U.

Remark 4. Every holbmerphically barreled space is a barreled

space (see [20], [17], [19] for the concept of a barreled space).

Definition 5. A given Eisa holomoaphically infrabarreled space

if, for every U and every F, we have that each collection 3E <
3 (U;F) is amply bounded if (and always only if) X is bounded

on every compact subset of U,

Remark 6. Every holomorphically infrabarreled is an infra-
barreled space (see [20}, [17], ({19] for the concept of an infra

‘barreled space, also called quasibarreled space).

Definition 7. A given E is a holomonrphically Mackey space if,
for every U and every F, we have that each mapping f:U-+F belongs

to %(U;F) if (and always onky if) f belongs to % {U;wF).

Remark 8. Every holomorphically Mackey space is a Mackey space

(see [20], [17), [19] for the concept of a Mackey space).

Definitions 1, 3, 5 and 7 were introduced in {30], [31] and
developed in [3]. A variation of Definition 1 was given in [21].
We recall that a subset K of E is said to be jast compact if
there is a complex Banach space S which is a vector subspace of
E and contains K, such that the inclusion mapping S+E is . con

tinuous and K is compact in S, hence compact in E.

Definition 9. A given E is a hofomorphically wultaabornolo-

gical space if, for every U and every F, we have that each mapping
f:U+F belongs to 56 {(U;F) if (and always only if) f is finitely

holomorphic and £ is bounded on every fast compact subset of U.
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Remark 10. Every holomorphically ultrabornological space 1is
an ultrabornological space (see [20}, [17), [19) for the concept

of an ultrabornological space).

Definition 9 was introduced in [15]}. It should be compared
with the definition of a holomorphically bornological space given
in [21].

Proposition 1l1l. Let us introduce the following abreviatiohs

for properties of a complex locally convex space: hub = holomorphl
cally ultrabornological, hba = holomorphically barreled, hbo::hblg
morphically bornOIOgicai, hib = holomorphically infrabarreled, hM=
= holomorphically Mackey. We have the following implications for

the named properties:
ﬂﬁay hba
hub \hib =3 hM
Q§§§hb ¢§57 :

O

Proposition 12. A Fréchet space and a Silva space (that is,

a DFS space) are holomorphically ultrabornological.

Question 13. It is known that a DFM space is a holomorphical

ly bornological space [10]. This contains the fact that a $Silva
space is a holomorphically bornological space (see the preceding
Propositions 11 and 12} once a Silva space is a DFM space. It |is
not known if a DFM space is a holomorphically . ultrabornological
space. However, it is known that a DFM space is a holomorphically
ultrabornological space if (and only if) it is a holomorphically

barreled space {6].

Question 14, If _lE:1 and E, are holamorphically - Machey spaces,

is their cartesian product E = E1 X E2 a holomorphically Mackey space?
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In the affirmative case, it follows that any cartesian product of
holomorphically Maékey spaces is also a holomorphically Mackey.
space, as noted in‘[61. Remark that E =¢mxﬂ:‘(m) is a cartesian
product of two holomorphically ultrabornological spaces; but E is
not a holomorphically infrabarreled space [311, [3]. However, it
is known that E is a holomorphically Mackey space (this was stated
without proof in [31], and it is proved in [12]). More generally,
it is known that, if E is a holomorphically infrabarreled  space,
then ¢Ix E is a holomorphically Mackey space for every set I(See

[61).

Question 15. If a holomorphically bornological space is com

plete in‘a suitéble sense, must it be holomorphically ultraborno
logical? This question is motivated by the remark that, if a bor.
qological space is sequentially complete, then it must be an ul-
trabornologicél space. See [21] for a proof that certain  quasi-
complete holomorphically bornological spaces must be holomorphi-

cally barreled.

Question 16. For E to be a holomorphically barreled space it

is necessary and sufficient that E be a holomorphically infrabar
reled space, ard moreover that E has the following Montel prdperty: for every
¥ and every F, we have that each col]_.ectionx: ﬂ-!,(U:F) is relatively
compact for % if (and always oniy if) % is boﬁnded on every fini
te dimensional compact subset of U, and‘aﬁ(x) is relatively com-
pact in F for evéry XxGU (see [3]). On the other hénd, for E to -
be a holomorphically infrabarreled space it is necessary that E
be a holomorphically Mackey space, and moreover that E has the
following infra;Montel property: for every U and every F, we have
that each collection IC&(U;F) is relatively compact for '60

if (and always only if)aE is bounded on every compact subset of
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U, and %,(x) is relatively compact in F for every x6U (see [3]).

Is this necessary condition also sufficient?

3. TOPOLOGY ON SPACES OF HOLOMORPHIC MAPPINGS

Let E and F be complex locally convex spaces, U be an open
nonvoid subset of E, and X% (U;F) be the vector space of all holo
morphic mappings of U to F. We may consider three natural topolo

gies ‘G ‘6 and '66'011 %(U-F) We haveﬁcgdq If E is fi—

nite dimensional, then 'é c ‘6 . The question arises as to

when 6 6 or 'g 'g

Definition 1. The compaci-opern topology éo on %(U;F) is

defined by the family of all seminorms Pgg as K varies over all
compact subsets of U and B varies over all continuous seminorms

of P, where
- Pgplf) = sup{Blf(x)] ; x 6K}

for all £ G£ (U;F).

Definition 2. A seminorm p on dé (U;F) is said to be poxrted

by a compact subset K of U if there is a continuous seminorm . B
on F such that, to every neighborhocd V of K in U there corresponds

a real number c(V) >0 for which
plf) <c(V).sup{B[f(x)] ; x 6V}

for all fG@(U;F). The poated topology ’Gm on£ (U;F) is defined

by the set of all seminorms on£ {(U;F) each of which 1is ported
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by some compact subset of U,

Definition 3. If I is a countable cover of U by open subsets.

of. U and 8 is é continuous seminorm on F, we denote by 5‘6 IB(U}F)
the vector subspace of£ (U;F) of all £ Gég(U:F) such that Bf

is bounded on every VGI, We use onég IB(U;E‘) the semimetrizable
topology _éIB_.defined by the family of seminorrﬁs Pyg 2% V varies

in I, where
po(f) = sup{B[£(X)] ; xeV}
for all £ GzIB(U;F). We note that we have the union
HG (U;F) = UI%IB(U;F)

for 'aqll B. We now define on 3L(U;F) the inductive limit topology 'gGB COrre-
sponding to this union, namely the 1argest 1oca11y convex topology on A%(U;F)
such that each inc.lusion mapping %[B(U}-F) +#(u;F) is continwous for every
I, where B is fixed. Finally, we define on% (U':F) the £imit Zopo

£ogy‘6 8 =n B‘g 58 as an intersection.

Lemma 4. If F is a Hausdorff space, F£0, and the topologies

60 and 6& 'coir_:cide on % (U;¥), then E is a semi-Montel space.

Question 5. Let E be given.

(a) When is it true that the topologies 15; and‘f%wfcoincide
onag(u;f) for évery U and every F?

(b) Is the answer to (a) positive if E is a Fréchet-Montel
space?

{c} When is it true that the topologies Ga_and ‘é% coincide
cnmjé(U:F) for everf U and every F?

We now indicate positive results in the direction of this
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Question 5,

The following Propositions 6 and 7 are due to Mujica [23],
[(24] . Another related result due to Mujica [25] states that, for
a nuclear Fréchet space E, the £opologies B .

o]
d%(u) for every polynomially convex open nonvoid subset U of E.

and 'é’m coincide on

Note that none of these three results implies any of the other two.

Proposition 6. Let E be a Fréchet-Schwartz space. Then the to

pologies“6 ° and ‘6 " coincilde on 46 (U) for every balanced open

nonvoid subset U of E.

Proposition 7. Let E be a Fréchet-Schwartz space with the

bounded approximation property. Then the topologies é o and éw

coincide onag (U) for every open nonvoid subset U of E.

In Propositions 6 énd 7, E is still restricted to being a
Fréchet-Schwart space. The following Propositions 8 and 9 are due
to Ansemil and Ponte [1]. They also give another proof of Proposi

tion 6, and state further related results.

Proposition 8. Let E be a Fréchet-Montel space, and U be a

balanced open nonvoid subset of E. Then the following conditions
are equivalent:

(a) The topologies "go and t‘fw coincide on 56(0) .

(b) The topologies $_ and 6 coincide on Pe) for a1l

RN .

Proposition 9. Let E be a Fréchet-K8the space which is a Fré

chet-Montel space. Then the topologies 60 and ém coincide on

ag(U) for every balanced open nonvoid subset U of E.

Remark 10. There are Fréchet-K8the spaces that are Fréchet-
-Montel spaces, but that are not Fréchet-Schwartz spaces (see KSthe

[20}, Jarchow [1%9]). Thus Proposition 9 gives an instance of a
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Fréchet-Montel space which is a not a Fréchet—Schwartz space, such
that the topolegies "fo and -fgw coincide on %.-(U) for every Dba-
lanced open nonvoid subset U of E, a conclusion.which does mot fol
low from Proposition 6. A further such instance is given by Anse-

mil and Ponte [1l] by using a construction due to Floret [13].

Remark ll. Ansemil and Ponte [l] indicate a relafionship be-
tween Question 5 (b) and the following open question which dates
back to Grothendieck {16]: is the completion of the projective ten
sor product of two Fréchet-Montel spaces also a Fréchet-Montel space?
It is known that the completion.of the projective tensor product
of two Fréchet-Schwartz spaces is also a Fréchet-Schwartz space

[16].

Remark 12. It is known that, if E =C' where T is a nonvoid set,
then the topologies ‘6 o and '6m coincide on %(U ;F} for every o-
pen nonvoid subset U of E and every F, provided I is countable; and
conversely, -‘60 and {m do not coincide on £ ({U;F) if F is a Haus
dorff space not reduced to the origin, provided I is uncountable
(see [4])}. Thus it is not reasonable to ask Question 5(b) for a

Montel space E that is not a Fréchet space.

- Proposition 13. Assume that every open nonvoid subset U of E
has a countable base of compaét subsets (that is, a sequencé of
compact subsets of U such that every compact subset of U is con-
tained in some membér of that sequence), and that E is a holomor-
phically infrabarreled space. Then the topologies 'go, {w and ‘66

coincide on 3@(U;F) for every U and every F.

Remark l4. A DFM space E is an example of a case satisfying
the conditions of Proposition 13. Thus it is a Montel space which

is not necessarily metrizable giving an affirmative answer to Ques
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tion 5(a). This result has been proved by Barroso-Matos —Nachbin

[2] for a DFS space, and it was extended by Dineen [10] to a DFM

space.

Remark 15. Question 5(c) as to when the topologies @w and

'55 coincide was considered by Dineen [11].

4. HOLOMORPHIC FACTORIZATION

Definition 1. Let E, E, and F be complex locally convex spaces,

ToiE*E, be a continuous linear mapping, U be an open nonwoid sub
set of E, and £ GJ&(U;F) . We say that f factons hotomdnphica,lty
through m, if there is a cover g of U by open nonvoid subsets of
U such that, to every V@ 8 there corresponds an open nonvoid sub
set W of E  with TTO(V)CW, and to every V@ %there corresponds
g G& (W;F) satisfying £ =gm, on V.

Convention 2. Let ni:E,-rEi be a continuous linear mapping be
tween the complex locally convex spaces E and Ei (icI1), .Where
I is a nonvoid set, such that we have the projective (also called
inverse)} limit representation E =1lim ie1
logy given on E is the smallest to;ology on E for which every

E, meaning that the topo

T, (ieTI) 1is continuous._

Definition 3. Following Convention 2, we say that holomox-

phic factonization holds fon the given projective Limit hepresen
Zation when every locally bounded £ GJ&(U;F) factors holomorphi-
cally through Te for some i6I, for every connected open nomwvoid

subset U of E and every complex locally convex space F.

Definition 4. Following Convention 2, we say that VCE is
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uuiﬁoaﬁtg open in the given profective Limit nepresentation when
there are 1 6I and an open subset W.CE, such that V= 'rr;.:l(wi). The
definition of a projective limit representation of E means that
the uniformly open subsets of E in that projective limit repre-
sentation form a subbase of all open subsets of E. We say that
the projective limit representation bf E is basic when all uni-
formly open subsets.of E in that projeétive limit representation

form a base of all open subsets of E. .

Proposition 5. In order that holomorphic factorization mtmhi.

hold for a projective limit representation it is necessary that

it be basic.

Definition 6. Following Convention 2, we say that the pro-

jective limit representation is open when all n.:E+E; (16 1I) are

open surjective mappings.

Proposition 7. Holomorphic factorization holds for every o-

pen basic projective limit representation.

Proposition 8. Let the complex locally convex space E be

given, The following conditions are equivalent:
{1) Holomorphic factorization holds for the projective limit

representation E = 1lim E. .

+« a6Cs(E) ¢
(2) Holomorphic factorization holds for the projective
limit representation E = 1lim E/a.
< a6 CS(E)

{3) Holomorphic factorization holds for some projective limit
representation E =1lim E; with complex seminormed spaces Ei (ic1).
‘ + 161
(4) Holomexphic factorization holds for all basic projective
limit representations E =1lim Ei with complex locally - convex
: « 161 '
spaces Ei and 'rri(E) =Ei {(icI).
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Definition 9. We say that holomoaphic factordization holds for

a given complex Locally convex space E when it holds for the stand

ard projective limit representations E = 1lim E or equiva-
« a6 CS(E)
lently E = 1lim E/a, or equivalently for the remaining two
+ o G CS(E) - .

situations in Proposition 8.

Example 10, We shall give an example of a complex locally con

vex space E for which holomorphic factorization does not hold. Let
E '=c16 {(C;C) have the compact-open topolo..gy. Fix a €C. Then f Gz(E;
C) defined by f(u) =ufu(a)] for uGE does not factor holomorphi-
cally in the sense of Definition 3 if.we consider the standard pro -

jective limit representations as in Definition 9.

Definition 1l. We say that the openness condition hofds fon .
a complex Locally convex space E when the set CQUS(E), of all a € CS(E)
such that the quotient mapping E +E/a is open, defines the topolo

gy of E and is directed.

Remark 12. Valdivia [37] has shown that COS(E) is not neces-

sarily directed when it defines the topology of E.

Proposition 13. Holomorphic factorization holds for every com

plex locally convex space satisfying the openness condition.

Note that- Proposition 13 follows from Proposition 7.

Proposition l4. Holomorphic factorization holds for every oam
plex locally convex space E satisfying the following conditions:
(1) For every segquence Vn (ne N} of neighborhoods of 0 in

E, there are r > 0 (ne ™) such that

v-N r v

né N nn
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still is a neighborhood of 0 .in E.

(2) From every open covef of every open subset U of E we can
extract a countable subcover of U.

For examples of complex locally convex spaces for which holo
morphic factorization holds in view of Propositions 13 or 14 we

refer to [33].

Problem 15. Do we change Definition 3 if we restrict F to being

an arbitrary complex normed space (instead of being any complex
locally convex space)} in which case every f € %(U;F) is locally

bounded?

Problem 16, Find necessary and/or sufficient conditions for
holomorphic factorization to hold for a given-projectiv; limit re
presentation, in particular for a given complex locally comvex space.
If E is a metrizable complex locally convex space for which holo-
morphic factorization holds, does the openness condition hold for

E (that is, is the converse to Proposition 13 then true)?

Problem 17. Consider projective limit representations

E = lim E; (1)
« i8I
E.= lim Ec " (2)
R T o)

with respect to the families of continuous linear mappings 7.:E~>E; (161I)
and nij:Ei-+Eij(i.GI,j €J,). Introduce the composition of these

projective limit representations

E = lim : E.. (3)
« (i,j) ¢ 1=y, M
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which is a projective limit representation with respect to the fam
ily of continuous linear mappins Trij.ni:E +Elj (iexr,j e Ji) . Do we
have.transitivity of holomorphic factorization, in the sense that
holomorphic factorization holds for that composition (3) if it holds
for all given projective limit representations (1) and (2)? Note
that the answer is affirmative if every projective limit represen

tation (2) is basic and open.

5 HOLOMORPHIC CONTINUATION

Definition 1. Let F be a given Hausdorff complex locally con

vex space. We say that F is confined if, for every complex local-
ly convex space E, we have that £ '(F) =U (or equivalently f£(U)C=F)
whenever U is a connected open nonvoid subset of E and £ G%(U:E)
is such that f"l(F) has a nonvoid interior, where F is a comple-
tion of F. To check this requirement on F, it suffices to take U
as the open disc of center 0 and radius 1 in E =€, to assume that
fciag(U;E) and that 0 is interior to £ '(F), and to conclude that
always £ "(F) =U, that is, to conclude that always £(U)CF .if

there is a neighborhood V of 0 in U such that f(V)CF.

Lemma 2. If F is sequentially complete, then F is confined.

Moreover wF is confined if and only if F is confined..

We recall that, if E and F are complex locally convex spaces
andIU is an open nonvoid subset of E, we introduce the wvector space
H(U;F) formed by every f£:U-+F such that £ G%(U;f‘) when f is con-
sidered as havihg its values in a completion f of F. It is clear
that H(U;F) is independent of the choice of F, that 30 (U;F) CH(U;F),

and that we have % (U;F)=H(U;F) if F is complete.
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Definition 3. Let U, V and W be connected open nonvoid sub-

sets of a complex locally convex space E with WeUnvVv, If F is a
complex locally convex space, we say that V {s a holomorphic F-
valued continuation of U via W when for every f GH(U;F) there ex-

ists g @H(V;F) such that £ =g on W.

Definition 4. Let E be a given complex locally convex space.

We say that weak holomorphy plus s8ight holomonrphy imply hofomon-
phy ocn E if, for every complex locally_convex space F,we have that
fi;JG(V;F) whenever V and W are connected open nonvoid subsets of

E with WCV so that £ & ¥ (V;wF) and £lw G%(W;F).

Remark 5. Weak hélomorphy'plus slight holomorphy imply holo-
morphy on E in two noteworthy cases: .
(1) E is a holomorphically Mackey space, because then weak
holomorphy albne implies holomorphy on E. |
| (2) E is a Zorn spacé in the sense that, for every oamplex . 1o
cally convex space F, we have _that b G%(V:F) whenever V is a con-
nected open nonvoid subset of E and £f:V+F is finitely holomorphic

such that there is some open nonvoid subset WV  for which f|W e

& ;7).

Proposition 6. Let E and F be given complex locally convex

spaces. Assume that weak holomorphy plus slight holomorphy imply
holomorphy on E, that F is confined and F#0. Let U, V and Whbe con
nected open nonvoid subsets of E with We UNnV. Then V is a holo-
morphic F-valued continuation of U via W if and only 1f V is a ho
lomorphic €-valued continuation of U via W.

For details, see [29]

Question 7. Is it true that, for any complex locally convex

space E, weak holomorphy plus slight holomorphy always imply holo
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morphy on E?

Question 8. Does Proposition 6 hold in general for an arbi-
trary E without assuming that weak holomorphy plus slight holomor

pPhy imply helomorphy on E?

In view of Proposition 6, an affirmative answer to OQuestion

7 implies an affirmative answer to Question 8.
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