ISSN - 0029 - 3865

CBPF-NF-027/85
ANISOTROPIC HEISENBERG SURFACE ON SEMI-INFINITE
' ISING FERROMAGNET: RENORMALIZATION:
“GROUP TREATMENT

by

Uriel M.S. Costal*?, Ananias M. Marizl»?
and Constantino Tsallis®

1Centro Brasileiro de Pesquisas Fisicas - CBPF/CNPq
Rua Dr. Xavier Sigaud, 150 - Urca
22280 - Rio de Janeiro, RJ - Brasil

*Departamento de Fisida
Universidade Federal de Alagoas
Cidade Universitaria.

57000 - Maceio, AL .- Brasil

*Departamento de Fisica Tebrica e Experimental
Universidade Federal do Rio Grande do Norte
Campus Universitario
53000 - Natal, RN - Brasil



CBPF-NF-027/85

ABSTRACT

We use a Migdal-Kadanoff-like renommalization group approach to
study the critical behaviour of a semi-infimite ..gsimple cubic
Ising ferromagnet whose (1,0,0) free surface omtains anigotropic
(in spin space) Heisenberg ferromagnetic interactions. The phase
diagram presents three phases (namely the paramagnetic, the bulk
ferromagnetic and the surface ferromagnetic ones) which join on
a multicritical point. The location of this point is galbulated
as a function of the anigsotropy. The various universality clas

ses of the problem are exhibited.

Key-words: Surface magnetism; Anisotropic Heisenberg model; Phase

diagram; Rencrmalization group.
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I INTRODUCTION

The appearence of surface effects in magnetic systems has
been studied extensively during last years. Both - theoretical
and experimental efforts have been dedicated to the subject
(see Ref, [[1] for a recent review) because of its various ap
plications és well as its intrinsic richness,.A_quite intexr
esting and realistic particular situation is that whexe the
surface magnetic interactions differ, in strength and even in
nature,. from the bulk ones, A possible experimental implemen-
taticn of such a situation can be done by adsorbing, on top
of the magnetic bulk, a -layer of different magnetic atoms.
Among the variéus theoretical approaches that can be used to dis
cuss this type of system,the real-space renormalization- grouwp
(RG) is a quite convenient one as it hopefully provides a good
description of its criticality -2-6J,

In the present paper we @discuss a spin 1/2 semi-infinite
simple cubic lattice Ising ferromagnet with a (1,0,0) free sar
face (square lattice) whose interactions are of the aniso-
tropic Heisenberg type. Our approach is a Migdal-Kadamoff-like
RG which follows along the lines of Refs. [ 5] and C7]. m sec-
tion II we iﬁtrdduce the model and formalism, in Section 1III
we present the results, and finally we conclude in Section IV;

operational details are given in Appendix.

II MODEL AND FORMALISM

We consider the-following Hamiltonian:
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Ji-P = E(l n; )(als +0y0y) + 0% cr:l (1)
< i J> i i

where <i,j> runs over all pairs of first-neighbouring ‘'sites
on a semi-inifinite simple cubic lattice with a (1,0,0) free
surface (see Fig. 1); the o's are the standard Pauli matrices;

(Jij'nij) equals (JB,l) in the bulk (Js,z-O), and equals ué,
n). on the free surface (JS >0, 0<n¢l), The n=1and n =20
limits respectively correspond to the Ising and isotropic Hei
senberg models. We introduce the following convenient varia-

bles:

K, = J /KT (r = B,S) (2)
t. = tanh K (r = B,S) (3}
A= /T~ 1=FKg/R, =1 (4)

where T is the temperature and k‘B the Boltzmann constant.
The phase diagram for the purely Ising case (n = 1) pre-
sents three phasesl:s'e'a-j'z],namely the bulk fearomagnetic (BF;
both the bulk and the surface are magnetized), the  suirgface
fernomagnetic (SF; finite surface but vanishing bulk magnet-
izations), and the paramagnetic (P; no spontaneous magnetiza
tiocn) ones. We intend to study the evolution of the phase
diagram when quantum aspects (n # 1) are introduced in the free
surface. To perform this analysis we follew along the lines
of Ref. 5 and construct a RG with Migdal-Kadanoff-like clus-

ters E13,14j (see Fig. 2) for both surface and bulk bonds.
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The partition function of each cluster is preserved through
the renormalization. The clusters of Fig. 2 are reducible in
sequencial series and parallel operations. This fact enables
the quick (and exact) calculationElB] of the cluster of Fig.
2(a), all the bonds of which are Ising (i.e., classical) in-
teractions. We also take advantage of this fact to make eas-
ier the calculation of the cluster of Fig. 2{(b). In this case
however, guantum effects are present and therefore the result
is not exact; nevertheless it constitutes an excellent appro-
ximationE7:| .

For the bulk we obtain the folleowing recursive relation:

3Ky
-3Kp

(5)

-K
¢ 3e_ B+e
T K
3B 4+ e

Ky =3
which is equivalent to Bjy. (7} of Ref. ES] This equation
admits two trivial (stable) fixed points (at Rg =0 and K, =),
as well as a critical (unstable) one {at a finite value of
KB).

The calculation of the recurrence for the surface is more
complex. We first solve (see Appendix) a series  array of
three bonds (each of them associated with Kg o n)), and obtain
the equivalent parameters noted Kg’(KS,nI)' and n;s(KS.n). If the
three bonds are of the bulk type (i.e., Ising interactions),l
the equivalent parameters are Kg(KB,l) and n;‘;(KB,l) =1, We
how approach the cluster of Fig. 2(b) by six parallel branches
[being three of the type (K (K '), n (X d,n)) and three of the

type (,Ks Blr1) lj and obtain]:7:] the following recurrence:
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-4—
Ky =3[ ®m) + K11 (6)
qr = _ :
Ks

Egs. (5)=(7) formally close the construction of the RG: the
flow they determine (in the (Kgs X, ,n) .space for instance]
Yields the phase diagram and exhibits the relevant universali

ty classes.

III RESULTS

The present RG provides the flow diagram indicated in Figs.
3(a) and 3(b) (in the (tg,to,n) space), where we note two in
teresting invariant subspaces, namely n = 1 (purely Ising prob
lem) and n = ty = 0 (fully bulk-disconnected isotropic Hei<=
senberg free surface). We also note the following factg: (i)
three trivial (fully stable) fixed points, namely at (tB,ts,
n) = (0,0,1), (1,1,1) and (0,1,1), characterize the three
phases of the system, respectively the P, BF and SF ones; (ii)
five main semi-stable fixed points are present, namely at (tB,tS, :
n) = (tgn,l,l) (characterizing the standard D = 3 miversality
class; th

the D.= 3 TIsing model], (tgn,tégl) (characterizing the non

corresponds to the finite critical temperature for

trivial . universality class associated with the surface phase

transition occurring simultaneousfy with the bulk one; tl is

s
a finite constant}, (O,tén,l) {(characterizing the standard D =

2 universality class; téD corresponds to the finite -<critical
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temperature for the D = 2 Ising model), (tgn,téy,l) {charac
terizing the universality class of the multicritical line where
all three EFBF and S join together) and (0,1,0) (characterizing the wni=
versality class of the D=2 igotropic }biselaberg model, whose critical
temperature vanishes); (iii) one fully unstable fixed point at
(tB'ts'h) - (th,l,O) which is a special point on . the above
mentionned multicritical line, and determines by itself a new
universality class. In short the universality classes of the
problem are Ising-dominated, and the isotropic Heisenberg na-
ture prevails only when no source of' Iging symmetry exists at
all. In Fig. 4 we present cuts of the critical surface (in the
(4,T) space) for typical values of the anisotropy . The loca
tion of the multicritical point as a function of nis indicated
in Fig. S; 4, is the value of A above which surface magnetic
order can subsist even if the bulk is disordered). For n =1
we recover the result of Ref. 5, i.e., Ac &~ 0.74, which com-
pares reasocnably well with the series result EB] 0.6 £0.1, the
Monte Carlo one c21] 0.50 %+ 0.03, and other RG ressultE‘.6 ]
0.569.

IV CONCLUSION

We have used a simple renormalization group approach, with
Migdal~Kadanoff~like clusters, to study surface critical ef-
fects in semi~infinite lattices of spins 1/2 which interact
through standard Ising ferromagnetic couplings in the bulk,

and through anisotropic Heisenberg ferromagnetic couplings
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on  the free surface. The anisotropy n is assumed to vary between 0 (iso
tropic Heisenberg free surface} and 1 (purely Tsing problem,
relatively well discussed in the literature). The present fe—
sults can alternatively be applied to the hierarchical lattice
deternined by the topological recurrence.in Fig. 2, and for
such system they are strictly exact for n =l[17] and approximate other—
wige-7J; of be applied to the semi-infinite simple cubic Bravais lat-
tice wiﬁh a (1,0,0) free surface, and for such system they are, for all
values of ®, approxdimate (although qualitatively correct). The phase dia
gram presents three phases, namely the paramagnetic, the bulk ferromag-
netic and the surface ferramagnetic ones. All three phases join, for a
given value of n, on a multicritical point, whose location can be
characterized by 4 (defined as the particular value of 4 =
JS/JB' - 1 above which surface ordering can exist even in the
absence of bulk orderingl. 4 monotonougly .and continuously
decreases while n increases from 0 to 1l; it .attains its maxi-
mum at n = 0, where it presents a 5_01,{2:2 value (Aé v2.5). This
belmviour is in disagreement with re_ce_nt.resul.ts]:lejobtained
for the FCC lattice which suggest the existence of a {4inife
positive critical value n  below which the surface ferramagnetic
phase cannot exist: the present treatment yields n, < 0. Ac at
tains its minimum for n = 1, where we obtain 4 2 0.74 which
compares satisfactorily with other values available in  the
literature.

Ag intuitively expected, most regions of the ciitical sur
face belong to the universality classes assocliated with the
lowest symmetry of the problem, the Ising model in our case.

In particular all points but one (corresponding to n = 0) of
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the multicritical line (on which all three phases join) belong
to the bulk-surface Ising universality class; the n = 0 point

constitutes a non -trivial universality class by itself.

APPENDIX

We consider a series array of three (¥,n) bonds and four
sites (see Fig. 6, where {(K',n') is to be identified with (Kg,
ngﬁ of the main body of the paper). The array is characterized

by the dimensionless Hamilténian

= o X X
J*P1234 K[}l n)(o a + ojoy + 0530, +
Y.y x Y.y ] z Z zZ z
039, +040 +u 4 ) + (01¢3+0304+0402 )] {(A.1)

This array is renormalized into a single bond whose dimension-

less Hamiltonian is given by

J"'Plz = K°' +K'[Ll n' )(U +ﬁ5{0§) + 01 2:' : {(A.2)

where KéwK' and n' are to be found as functions of (K,n) by

imposing

e | . sh23s
3,4

(A.3)

where:$§ denotes the trace over the internal sites of the
B

series array.
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Let us now outline the intermediate steps of the calcula
tion which follows along the lines of Ref. [_7]. We first ex
pand both sides of Eg. [_A.3], and obtain |

P
12 _ ' (%a® + o¥o)

e a' +b La + alaz) + clzﬂl (A.4)
and
cdf1234 _ a+ [ [b, (Uxa + cryoy) + ¢, czoz]

i3 ij17]
¥ ¥y 2 2 Y.y
+ izj J(clcl-+clc Yo Ué]-ke(ﬁl 2-+c o) (03 4 +
k< £

(i,j)¥¢(k,1)

6303) + f£olos0%0; (A.5)
374

These two expressions replaced into Eg. (A.3) - immediately

yield

a' = 4a (A.6)
biz = 4b12- (A.7)
ciz = 4c12 (A.8)

By :expréssingch-?' in the basis which diagonalizes . it we

can easily find K} = Kj(a',b K' =K'(a',b! } and

127C12 )¢ 12612
n' = n'(a’ b'z,clz). By diagonalizing “"?1234 we can similarly
find a = a(X,n), b 12 = blz(K,n) and ¢, = °12(K'n)_‘ All these
relations together with Egs. (A.6) - (A.8) providethe rela-

tions K§ = Kj(Kn), K' = K'(K,n) and n' =n'(K,n)  we were
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looking for. We obtain the following expressions:

2
K' = 1 Zn F3 (A.9)
77 FF, o
;ln(Fl/Fz)
n' = 1 - - 2 ’ (Aclo)
Zn(Fs/F-le)
where
(A, ~K=-w)?
1 |: w+Aq w=X 2 “K+2)\
F, = —I| (X, —w+K)e + (A, + w=K)e 1]+ — € 2 +
Loyt 1 X, 0,8
(At Kew)? 3 /b.+1N\2 .
z-rz—(m e K 2A2 + z ; ) eEl (Aall)
2 i=1 i
' _ (O, =K+w)?
F, = .%.[(Al ru+Re M 4 (4 —w - R 4 2 —r e X2
1 . AT2NT2
(A, +R-w)? 3 _b.~-1
1127:\24-_1(5 etz 4 1 ( ;,)2 e"i (A.12)
1= L
A.=w=K A +wkK ., +uw-K
_ —W+A 3 w=A WA, 4
F3 2)‘3 e 3 + -—2-r3—— e 3 + ——f-r;-—e 1
Ay=w+K -K 3 a.
1 w=X e iV _E; ]
-1T1__ =1 1 + T + izl (;’; e 1 {A.13)
with
w = K(1 -n) (A.14)
~ —21/2
11= (K-w)? + 4w2:1 (A.15)

- 1/2
A= KZ +LU2] (Ac 16)
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~10-
1/2
)\3 = I:(K+m)2 + 4m2:|

Ei-

a; = Z(Efig) (i
1
Ei-K

b, = =55 (i

1/2 .
X, = [2(1 +a2+b§)] (1

i

=1,2,3)

=1,2,3)

1,2,3)

(A.17)

(A-18)

(A.19)

(A.20)

where the Ei‘s are the roots of a cubic equation and are given

by
E =g cos 2 - K
1 3
] - M -
E2 0 COSs 3 K
E3 a cos - K
with
1/2
a = 4[(18 -5w2)/3:|
and
. —2 x33/ 2,2

= arc COS[_:T_-W]
(K° +5w?)

(A.21)

(A.22)

(A.23)

(A.24)

(A.25)
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CAPTION FOR FIGURES

Fig.

Fig.

Fig.

1 - Semi-infinite simple cubic lattice. The dashed (full)

lines represent the surface (bulk) bonds assealiated
with (Js,n) (with (JB,I)).
RG cell transformation: (a) for the bulk (KB EJB/kBT};

(b} for the free surface (KE;EJs/kBT). o and e respec-

tively represent the terminal and internal (being de-

cimated) nodes.

RG flux diagram and critical surface: (a) in the (tB'
ts,n) space (tr =tanh K (£ =B, €)); (b) for the n=1
subspace {(purely Ising problem).® denotes trivial (fully
stable) fixed points; s denotes critical (semi-stable) fixed.
points; .o denotes the multicritical (fully-unstable)fixed point.
B,SF and BF respectively denote the para=- ,.surface ferro- and.

bulk ferromagnetic phases. Dashed lines are indicative.

Fig. 4 - Fixed n cuts of the critical surface in the 4-T space

Fig.
Fig.

(A 2 JS/JB -1).

5 = n dependence of Ac.

6 - RG transformation for a series array of three bonds.
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FIG.A
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FIG.2
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FIG.3-a
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