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ABSTRACT

We present a class of cosmological solutions of Einstein-
Maxwell equations, which have the Bertotti—Robinson model as
an asymptotic configuration. The novel feature of the models
is the presence of a conductivity current in Maxwell equations
characterizing a regime of magnetohydrodynamics. Exact analy-.
tical solutions are exhibited and the solutions may be used
as the interior model for the collapse of a self-gravitating

bounded fluid with electric conductivity.

Key-words: Cosmology; Kantowski-Sachs models; Magnetohydrpdynamic

cosmologies; Bertotti-Robinson models.



CBPF-NF-027/86

1 INTRODUCTION

The purpose of this paper is to examinea class of Kantowski-
sachs [[1,2] (KS) cosmological solutions of 'Einstein-Maxwell
equations, which have the static Bertotti-Robinson model (3.,4]
as a limiting configuration. In spite of Robertson-Walker-Friedmann
models fairly éescribé the present geometry of the Universe, same
astrophysical data - e.g. the intergalactic magnetic field [5]
sugggesting the existenceof a primordial magnetic field, and the amount
of Helium production [ 6 | - received a more accurate explanaticn
in the background of anisotropic big bang.models. In this context,
KS models -have been used as a possible class of bicj-—bang models
mainly inéluding those with an anisotropic expansion ]:7] .

On the other hand, it is known from the thermal history of
the Universe that in eras prior to recombination the material
content of the Universe was primarily ionized hydrogen and elec
tromagnetic radiation ]:8:] . If.in these phases a non-null elec
tromagnetic field was also present (whose reamnant could be the
intergalatic magnetic field), the collisions of the accelerated
electrons with matter would then produce a net temperature-de-
pendent electrical conductivity. In fact, as well known from
plasma theory the conductivity of a fully ionized plasma de-
pends on the temperature as a power law [:9] implying that the
»conductivity i§ time dependent, and changes : .as the 'Universd
evolves in this era before recombination. |

The presence of electric conductivity could be of importance
to the theory of galaxy formation - actually . Fennelly [(10]

showed that an exponential growth of the contrast.densityis possible
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in a Bianchi I model with electric conductivity.

In this paper we present a class of universe models which
incorporate the above discussed features: they may have aniso-
tropic or isotropic expansion, electromagnetic fields together
with a time-dependent electric cohductivity. The geometry is
taken to be of the Kantowski-Sachs type with topology RxRxS?.
The models are to be’solutions of the Einstein-Maxwell equa-
tions with the cosmological constant term, and a perfeét fluid
(electrically neutral in average) satisfying the equation of
state p = Ap, -1/3 < X < 1. The source of Maxwell equations is
a space-like four current in the direction of the fluid. _ 1In
other words the fluid is said to be in a magnetohydrodynamic Ell] re
gime with a conductivity current. Since the space-like four cur
rent is parallel to the electric fiéld, the conductivity param
eter is defined as the ratio current/electric field and it is
a time-dependent scalar [ 127.

We program the paper as follows. In Section 2 we give the
dynamics of the models according to Einstein-Maxwell equations.
In Section 3 we examine the restrictions we must impose on the
solutions in order that they are physically meaningful. The
differential equation for the scale function B(t) is analysed .
as the l1-dim motion of a pafticle in a potential V(B). In
Section 4 exact analytical solutions are given and their prop-
.

erties analyzed. In the final Section we summarize our results

and discuss some pbssible physical applications.
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2 THE DYNAMICS OF THE MODELS

In the four-dimensional space-time with structure RxRxS?

we introduce the Kantowski~Sachs geometry given by

ds? = dt? - A% (t)a) - B2(t) (d6?% + sin?6d¢?) (2.1)
The matter content of the models is a perfect fiuid plus elec-
tromagnetic fields. We assume that observers comoving with the
fluid have four velocity u = 3/3t, and we denote by p and p the
matter-energy density and pressure respectively, as measured
locally by the comoving observers. The iequation of 'state for

the fluid is assumed ElB]
p=ip ¢ -l/3 <221 (2.2)

Elecﬁromagnetic fields satisfy Maxwell equations' with souxce,
From - spatial - homogeneity. and the existence: of. a prefer-
red spatial direction determined by the Killing field - 3/3x ,

we restrict the electromagnetic tensor

t
i

01 AE(t)

(2.3)

%!
it

B 2 ]

23 B sin6H(t)

all other components zero. This is actually the unique possibili-
ty, as can be shown from purely algebraic considerations in Einstein-

Maxwell equations for (2.1).



CBPF-NF-027/86

The electric four current is parallel . to the .:electric
field, as 1t follows from Maxwell equations for (2.1) and (2.3),
and it can therefore be given in the general covariant form of

Ohm's Law [11]]
j“ = gE~ = oF aul (2.4)

The space-like character of the four-current (2.4) implies
that the density of electric charge of the fluid must be zero.
In wother words the fluid is said electrically neutral in average and said
to be in a magnetchydrodynamic regime with a corductivity current. * Since
the four current is parallelto the electric field, the scalar ¢ is identi-
fied as the electric conductivity of the fluid. As we have mentioned
earlier, o depends on the cosmological time and this dependence
must be prescribed by Maxwell eQuations. To .completely specify
the dynamics we assume here a relatio-n between A and B, and

restrict ourselves to -a class of models such that .
(2.9)

with r a real parameter.

Einstein-Maxwell equations ]:14:] for (2.1)-{(2.5) yield then

g = at n(EB*“) s H= —2 {(2.6)
B
\ v . Hz
E* = (I-ng + (1-rH)B- 4+ L _ 20 (2.7)
' B2 B? B*
- wa 2 2 )
b = r21 % s Do¥4r+l B 1, (2. 8)

B? 282
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2 3 2
(1+A)r2+4kr+l+l B paen)y =0 (2.9

~B?2  2B?

(1+2) r+3-X :B: +
2 B

where HO 1ls a constant and the cesmological constant A is po-
sitive. Equations (2.6)~(2.B) are considered as defining the
electric conductivity o, the matter-energy density p and the
square of the -electric field (in a local Lorentz frame). EZ.
In the domain of solutions of (2.9} we must theh guarantee the
positiveness of ¢ , p . and E? in order to have physically ad-
missible solutions.

Introducing a new time variable n defined by

dn = 3 %at (2.10)
where
(1M r2+4Ar+14) o
® = T (r-x,) (2.11)

with r°'= (A—3)/(1+1) ElSj, equation (2.9) can be reexpressed

1-2AB? _20-1

B" + = B =0 (2.12)

where a prime denotes n-derivate.

In the spage of solutions of (2.12), the point

B = B'* =0 (2.13)

1
v2i

is a solutiocnwith p = 0, o = 0 and
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EZ 4+ HZ = 24 (2.14)

This corresponds to the Bertotti-Robinson (BR) sclution with
topology RxRxS? [[16].
Equation (2.12) has the first integral

2o
B'2 + (- 205 ) =l (2.15)

where C is an integration constant. For the BR solution C must

assume the value

1
a (a+1) (z=r ) (2A) &

C = (2.16)
In the remaining of the paper, we shall restrict ourselves to
solutions of (2.15) for C assuming the above value 177 . Using
equations ﬁ2.12), {2.15) and {(2.16) we obtain

_ 28 [2e-1_ _ ¢ Ca 2(r+l) (2r+1)
() (er ) | %L aAB?  a(asl) (z-r ) (20) %1520
(2.17)
and
g? = _2A [ (1=r) (x+2)  ZFEY O a(are1) (1-p) (1-2) B
T o+l aAB?  a(orl) (or ) (1) (20 B2 o
. (2.18)

where r, = - 20/ {X+1) . Alsc we have from {(2.6)

E’B

20 |:2(r 1) (r+2) _TloEy) o —2(0=1) (2r41) A1) AN o,
BEYY (p- -r,) a+l aAB?  ala)r-r rennf N

(2.19)
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We remark from the above expressions that B 0 is a physic;al
singularity of the models since the Irelevant physical quanti-
ties diverge as B + 0. However, for the cases Ho = r=0, A=1
and Ho =0, r =~-1/2, A =1/3 the electrxic field is a constant,

namely B? = 24,

-3 THE PHYSTICAL SOLUTIONS

The range of admissible values of the exponent r must .be
restricted so that the solutions satisfy the physical . condi-
tions of positiveness of p , ¢ and E?. Indeed these conditions

are fullfilied only if
1 .
-—52rXxl {3.1)

To see this, first .we observe from (2.11) that if -1/3 <X < 1
than a(r—ro) > 0. Second weé interpret equation (2.153) as the
conserved Hamiltonian of a l-dim system with the effective po- |

tential

vi) =(% - 2 p2) (3.2)

o+l r

B2a
-T
The BR solution is an extremum of V(B), and musﬁtl be an absolute
maximun't in order to exist time-dependent solut.‘;ons. By plot—
ting the possibles curves of V(B) for differents values of «,
we can see that ¢ must be positive and r ‘> Ty [18]. Under these

restrictions it follows that the positiveness of p and' E? -
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given in -(2.17) and (2.18) - as B - 0 or B + » necessarily im-
plies (3.1).

~ Concerning the sign of p, we note that o is null exactly
abthe BR configuration Bp, = 1/V2Kk , as expected (cf. (2.17)).
For B >1/V2k we have p < 0. The positiveness of p restricts

then the range of B to

(3.3)

3~
=

and two possible classes of evolving cosmolbgical- models arise:
first, the universe starts from the singularity B = 0 and ex-
pands towards the configuration of the BR solution (B = 1/v2R,
B' = 0) in an infinite period of time; second, the universe
departs from the BR configuration (for example, by a perturba-
tion in the model) and contracts to the singularity B = 0.

The analysis of the sign of E? isla iittle more complicated.
The parameﬁer o plays an important role in this analysis. The
restriction on XA and r imposed by (2.2 and (3.1) imply that

0 £ a <2, We distinguish two cases:

(i) 0 <

Al
e
N
-
O
H
=B
f
N

A necessary condition for E? to be always positive is that

H = 0. Further, taking into account (2.2) and (3.1) the param
I

eters must be restricted to the undotted region of Fig. 1l.
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Fig. 1l: Domain of positiviness of p, B2 and_o.

For.(A,r) in the undotted region, E? is positive over the range (3.3).
‘The solid curve T is defined by a'= 1 and the solid curve £
is defined by the equation

. a+l
2¢ (x-r,) :l 2SN 2 (3.4
D) (143) (r+2) (r-r )

The curve f represents the points (A,r) where the function
E*(B), given by (2.18), evaluated in its minimum, is zero. For
(A,r) below the curve f (see Fig. ¥ it follows that E® is neg

ative for B in a certain sub-interval of (0,B__).

BR
(i1) 1 < a < 2

We have two possibilities here: (1) If H = 0, E? is pos-

itive (modulo the range (3.3) for {(iA,r)) in the dashed region
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of Fig. 1 and above the curve f. The points on the curve f must
also be included. (2) If H, # 0 one further (sufficient) condi-
tion appeafs relating A,r and AH;, and will be analyzed only
for the value a = 1. As we shall see,'ﬂﬁs.ﬁatbelnﬁgue physical
case of (1i).

We finally discuss the sign of o. We start by noting that
-the expansion parameéer 8 of the models (associated-to the four~

velocity field 3/3t) is given by

. {2#0)B°

(3.5)
Bu+l

From equation (2.19).it is immediate to see that the sign of o
changes whenever 6 changes sign. For physical arguments connec
ted to Ohm's Law (2.4) and the inferpretation.of o as the elec
tric conductivity'.'of the fIdid,,we will only retain the
solutions for which the conductivity parameter is positive in
the range (3.3) [T197].

- For 1 < a 412, A# 1 and r # 1, we can verify that o/B' has
not a definite s.ilgn in (3.3). Therefore these values of -a nust
be excluded. |

For 0 £ a < 1, o is positive if the universe is contrac-
ting (6 < 0) and if the values of (A,r) lie in the undashed
region of Fig. 1. The curve g in Fig. 1 is defined by the equg.

tion

r(r-r,) %*1 :
[( 1 J -0 - (241 _ (3.6)

r~1) (r+2) |- (l+A)(r+2)(r-ro)

and is obtained in a similar way as the curve £, i1.e., if Bc
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is the point where the function U(B)EZBLHVZABL—given by (2.19)-
has a minimun, then the curve g represents the points (A,r) where
o(B) = 0. We note that the points on the curve g belong to
the physical region.

The .cases (A =1, 0 < r < 1) and (r =1, 1/3 < A £ 1) vmust
also be included and cbrrespond-to contracting solutions with
c > 0. |

The undashed region of the square of Fig. 1 = including the
boundaries plus the points (A =1, 0<r <1) and (r =1,1/3 <l5})j
is then the physical region of parameters for this case and
corresponds to cosmological solutions which start from the
static BR configquration (for example, by a perturbation in the
density p, or ‘in the electromagnetic. fields, etc,) and contracts
towards the singularity B = 0. The latter can be used as the
interior model of a collapsing self-gravitating bounded fluid

with electric conductivity, which we shall discuss elsewhere [20.

4 EXACT ANALYTICAL SOLUTIONS

Equation (2.15) can in general be integrated and for sev-
eral values of a the solutions can be expressed in terms of
Jacobian elliptic functions. For the cases (2.16) considered
here some of them reduce to elementary functions. We  obtdin
here explicit analytical solutions and discuss their properties

for the following values of o:

(i} o = 1/2
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For this case we have two possibilities: first r=(1-3))/(1+)
go that the range of (A,r) is 0 £ X < a and b < r £ 1 where the
values of (a,b) are approximately (0.55, -0.42), and
correspond to the intersection point of tﬁe curves a = 1/2 and
gl{cf. Fig. 1). The second possibility is r=-1/2 and ~1/3 < X <1/3,
The solution of {(2.15)/(2.16) is

1 V3K, 1
B = —— | 3tgh? —(n=ny) ~ 2 (4.1)
v2A 2v2
where x_ = \JM2R g0 tne first possibility ‘and K =
_ 6(1-2) :
0\ 2440 /2R for the second. 'l‘hevalueofno is arctgh 72
5-3X ' _ V3K, V3
for both possibilities.

Expression (4.1) describes a class of contracting -solutions
with equation of statep = ip, 0 < A < a. These contracting solu
tions have zero magnetic fielt;l and positive definite conductivi
ty o. The rate of contraction deperids on A and A through Ko_'
as can be seen from (4.1)-.. The BR configuration occurs at n ==
and the cosmological singulari.ty B = 0 occurs at n = 0. The e-
lectric field is real and the mass—-energy density positive, as
we have discussed, the latter being small near the BR configura

tion and diverging as B + 0,
(1) o« = 1
We have the relation r = 2(1-A)/(1+)X) so that 1/3 £ A <1

and 0 < r £ 1 (cf. also Fig. 1l). If Ho # o the additional res-

triction must be satisfied
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2 {32-1) (1-))
We obtain the solution
4
B = ———tghLo(n-no) (4.3)
V2

where L = /A+1//2(5-3X). This also describes a class of contrag
ting solutions with equation of state p = Ap, 1/3 <X £ 1. The
rate of contraction depends on A through Lo, as can be seen from (4.3)_.,-mt
oontrary to the case o =1/2 it does not depend on the cosmelogical constant.
The solution may present a non-null magnetic field, but'the mag—'
netic parameter Ho(cf. (2.6)) must then satisfy the ‘inequality
(4.2) for a given A in the interval [1/3,1]. The BR configura-

tion is attained as n =+ o,
(iiiy o = 2

From eq. (2.11) and considering Fig. 1, we are restricted

in this case to r =X =1. The solution is given by

B =

1 sinh’N _n ~6cosh N n+6 1/2
0 — 9 (4.4)

V2R sinh®N n ~ 24

where N = 1/Y2ZRk . In this case we must have H) = 0 in order that
E? be positive. The BR configuration is attained at n = and
the cosmological singularity at n =0. Since we have r =1 only,
these contracting solutions are isotroPic , namely the shear of

the fluid four-velocity 3/3t is null.



CBPF-~-NF-027/£6

-14-
5 CONCLUSIONS

We have examined here a qlasstﬁngwg-tmodels- -~ of the
Kantowski-Sachs type and solutions of Einstein-Maxwell egua-
tions - which have the static Bertotti-Robins¢én model as a
limiting configuration. The novel feature of: the models is the
presence of a conductivity current in Maxwell equations, charac
terizing these models in'atmagnetohydrodynamic regime and pos+~
sibly contributing to a more accurate description for the matter
content of the universe in phases prior to recombination. The
models are in general anisotropic but isotropic solutions are
also present in the class, for values of the parameter r = 1.
The conductivity is defined through Ohm's Law and Maxwell equa
tions over the cosmological background.

From the energy conditions and from physical -assumptions
connected to the interpretation of Ohm's Law in flat space-time,
we demand the positiveness of the matter-energy density p, the.
conductivity ¢ and the square of the electric field E*. It fal
.lows that all physical solutions must evolve from the.Berﬂﬁiﬁ-
Robinson configuration (B =BBR) to.,commlogigal singularity (B =0},
in an infinite periocd of time.

The solutions depend on two parameters (A,r) whose domain
is described in Fig. 1. If the magnetic field is null, the phys~-
sical region of the parameters is the undashed region of Fig. l,
including the boundaries and the points (A =1, 0 <r<1) and
(r=1, 1/3 <A £1}. If the mgnetj.c. field is non-null, the physical
region is the curve f (defined by a =1) excluded the end polints,

We remark that the positiveness of ¢ restricts the solution to
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contracting ones. The solutions may be used as the intezior
model for the collapse of a self-gravitating bounded fluid with
electric conductivity.

Exact analytical solutions are exhibited for +the cases
o %1/2, 1l and 2 in terms elementary functions.

We must finally comment about the sign of the conductivi-
ty and the distinction between contracting and expanding solu
tions. Let us for.simplicity restrict" ourselves to the cases
r=0 and r =1. From equation (2.19)- ‘'we obtain by a straight-
forward calculation that the sign of ¢ is opposite to the

sigh of the._a:pansioh parameter 6 given by (3.5), namely ¢ is positive
inthe contracting phase of the model.Thereis however. a bold. distinction

between the solutions r =0 and r'=1 concerning the interpreta
tion of 0. For a clfosed system in flat space~time it can be-
shown [ 217 that ¢ must be positive in order that the entropy
of the system increases. In the curved space-time of a cosmo-
1ogica:l‘quel the concept of entropy of a closed system is
not in general well defined. If we adhere to the orthbdox
principle that ldcally the entropy of any system must increase

and assume that the sign of the conductivity ¢ is related to
the local rate of change of entropy, then ¢ must be greater
than_ zero. For the anisotropic models r =0, this view can
actually be sustained by local thérmodynam—ic considerations:

from the local conservation of Tuv we can derive [ 22] that
the time derivate of the specific entropy is -given by ¢ =

wuvouv, where “‘W is the traceless anisotropic pressure tensor,
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and o*V is the shear of the matter velocity fluid 3/3t, and a
simple calculations yilelds ¢ = - 2E2B! /38%*!, Using the expres
sion (2.19) we show thét the sign of ‘o is equal: to the
slgn of ¢. |

For the isotropic solutions r =1 however auv =0. We have
obviously ¢ =0 and the above interpretation fails. It then
remains to be given ; physical criterion for defining the sign
of 0 if the concept of increasing entropy (even from a local
point of view) has any meaning at all for a macroscopic ‘sys-~

tem in interaction with the cosmological background.
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