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Abstract

We present an exactly solvable example of a non-stationary
system, which has an inertial and an wuniform accelerated asymptotic region.
We construct a set of sclutions that are quasi-classical in these two regions

and compare the two sets. The Bogoliubov-coefficients have thermal character

and show a temperature of ay , 2w, where ag is the asymptotic acceleration in
the out-region. This result is much what one would expect on the grounds of
the HawKing-effect, It implies that the natural particle number is not

conserved in free Minkowski-space.

Classification numbers: 03.70.k, 04.60.m, 11.10.Qr and 04.20.q
Key-words: Quantum field theory in curved space; Particle creation; Klein-Gordon

equation; Separable coordinates; Non-stationary systems.



CBPF-NF-026/86

] -~ Introduction

This work has its place in the interface of quantum field
theory and gravitation. It is well Known that this is a dangerous jungle where
common sense will help you 1little and where intuition is almost your oniy
equipment. But neverthless this enterprise has to be tried, the hope to unify
all the forces of nature in the context of a2 geometrical theory is very
tempting. The dangers are there, because we have very few possibilities of
experiments, because we seem to have to quantize the geometry itself, because
we sure have to survive a lot of phylosophical revolutions, and we will not

end this travel before the end of the crisis of the metaphysics!,

In this scenario we choose a safe way and attack the very first
problem of writing quantum field theory in general coordinates without leaving
flat space~time. This is Known, after the work of Fultingz, to be anything but
trivial: the very concept of particle is not well definab193, so that what
appears to be the vacuum to an inertial observer will look like a thermal
ctate for an uniformly accelerated cbserver with a temperature proportional to
his acceleration. In the technically very similar HawKing-effect the
acceleration will be replaced by the surface gravity of a black-hole showing
the first well stablished physical effect of quantum grauity4.

We now mention some other papers that followed in order to
situate our worK in the literature. The work of Fuiling is entirely based on
the Bogol iubov-coefficient, that gives a measure of the amount of particles of
the new field that are present in the old vacuum. This anaiysis was confirmed
by the introduction of the more physical - but more elaborated - concept of
particle detector by Unruh®. But soon the two methods contradicted one another
with the study of uniformly rotating observers® where the expectation value
of the number of particles in the inertial vacuum vanishes whereas the signal
of a rotating detector does not. After that, Letaw and Pfautsch’ showed that

in the coordinates related to the & Killing vectorfields of the Minkowski
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space there are only two Kinds of vacuum, but that the six immersed detectors
respond all differently. Accidentally, it is exactly the systems that show a
non-vanishing vacuum expectation value that have an event-horizeon. People

speculated about their relation, but the work of Sanchez8 gpoued that they

were wrong. In her work entropy is directly related to the presence of a
coordinate singularity, and temperature is higher the stronger the singularity
of the coordinate transformation, In a beautiful paper Grove and Ottewill?
succeeded to explain the contradiction of expectation value and detector
signal by separating the detectors’ self-excitation From the net absorption
etfect. They also pointed out the problem of taKking point detectors and
suggested a criterium to construct privileged detectors that will not
self-emmit. This recipe was misinterpreted by Mhyrvoldi0 and was shown to be
unmanageable in very simple situations in spite of its theoretically very
beautiful features <(in particular, it is not equivalent to Llyi; and
Pfautsch’s coordinates in the case that the detector follows one Killing
trajectory as they speculatedll), People also wonder about energy tonservation
of the Fultling effectlz, about its anisotropyIS, about topological effectsl4,
and about the dependence of the results on the coupling to the detector
$ie1d!3, A11 this wirr-warr leads Hinton!d to discuss the episthemological
content of the detector concept, demonstrating its almost uselessness.

In the present paper we further investigate the two dimensional
Minkowski space with the help of very geometrical coordinates: they are the
separable orthogonal coordinates for the Klein-Gordon equation separates. They
play the same important role as their euclidean equivalents - polar, elliptic
and parabolic coordinates - play in all physics. These coordinates are adapted
to very interesting physical situations like a global boost, an chserver that
is inertial in the past and uniformly accelerated in the future. They are also
useful to study compact regions of MinKowsKi plane, They are often not static
and, becausge of their simplicity, give us hope to master this difficult
situation. They are also easily generalized to more dimensions. And above all
they are such that the Klein-Gordon egquation (and almost all other interesting
quantities) are exactly solvable, destillating the physical understanding from
the mathematical dificulties of the problem.

We deduce and classify the coordinates in the next section. We
then succeed in solving the special case of an accelerating observer, thus

giving an alternative to the detector analysis in interpreting the Fulling
effect. This is done in the last two sections, where we calculate and discuss

these results,
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11 ~ Separable orthogonal coordinates

We look for the orthogonal coordinates where the Klein-Gordon
equation separates and is exactly solvable. Separable coordinates are well
Known in  two- and three-dimensional Euclidian space since the work of

Eisenhardt1? 1, Minkowski space they have alsc been classified by Urbantkel®

with elegant methods of projective geometry. We note that nc classification
existe in four dimensions; not even their number is Known, Recently some work
has been done on the more general guestion of separable manifolds!®, Here we
follow the reasoning of Morse, Feshbach?0  and get the - coordinate
transformation, metrics and all that, in a more usual Jlanguage in two
dimensional MinkowskKi space.

We begin with cartesian coordinateg (t, x) and the metric

a b
g = n b dx dx where a, b, ... =0 or 1; 1
a

n has signature ¢+, =). In normalized light coordinates the metric has only
one independent component,

[ - -1/2 |' 172 - 4
i = 2 Ct+x) o= 2 e
} 2
|+ 172 12 - 4
o= 2 Ct-x) x = 27 %¢i -1
- %
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By conformal transformations we can transform to any orthogonal
system. The new coordinates are denoted by a high case letter to contrast with
the old ones:

2 - + - +
a1 a1, 4

=
= 8
r
[+ 8
r
n

(T, X) are related to the L“s as in equation 2. There is no restriction in
taking

dL dt.

The d'Alembertian becomes

and the new Klein-Gordon equation is

2
-m 0 UATN0 7

2
<@ - & Y U (T,
T X

This holds in any system of coordinates that satisfies orthogonality.

We now ask for separability and write
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- 6§ =
2 2
2 0 ] = d - o 10
T X - +
we have
- 3 - + 3+
dlL d ! di dl
— — = — = ¥y 11
- -3 + +3
dl dL d? dL

These differential eguations define the orthogonal separable
coordinates. They are hyperbelic for v > 0, parabolic for v = D and elliptic
for v ¢ 8,

Hyperbelic coordinates are given by

1 ~w {(T+X) w (T+X)
t+x = — [ d @ + d e ]
w H 2
12
1 - {T=X) w (T
t - x = —— [ d @ + d e ]
w 3 4
with
2
d = sgn d and v = 2w . 13
j i
The conformal factor is
-2wT 2uT -
0 = d d e + d e - d d e - d d e . 14
1 2 4 2 3
Parabolic conrdinates are given by
e - - 9 -2
{1 = d L 4 =— (L
! 1 2
i 15
{1 ¢ + d4 + 2
L 1 = d L ¢ — L )
3 2

with conformal factor
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- 6 =
2 dida + d-d didy, - dnd d 2
o} = d d 2199 ° %29 __L_ﬂ._.__z_a.xq._z_ﬂ.('r..x). 14

Elliptic coordinates are given by

i
t + x B — [ d cos wi(T + X2 + d sin w(T + X) 1}
w 1 2
y 17
t - x = = [ d cos w(T = XD + d sinw(T - X) 1]
w 3 q
with
y = -w 2, 18
The conformal factor is
2 1
fl =— [ (dd +dd) cos 2wT -<dd + dd> sin 24T +
2 13 214 1 4 23
+¢dd -~ddy cos 2wX ¢ (dd ~dd) sin 2wX 1. 19
24 1 3 114 23

We could of course have asked only for flatness and
separability and get to equation 8 without the use of an explicit coordinate
transformation. We are neverthless looking for a coordinate transformation, so
this will be of no advantage.

S0 let us look at the coordinates. Figures 1 to 12 show the
systems of coordinates. It is interesting to note a few properties of these
coordinates. System A is the only one that covers the whole MinKowsKi-spacej
it is cartesianlike in a neighbourhood of the origin; the integral of the
acceleration of a point that follows the timelike coordinate line is +inite,

much 1ike a boost2l, gSystems B, D and G have one coordinate singularity at
1*= 0; it is an event-horizon for observers gecing with the timelike
coordinate line; for the last two systems the coordinate 1line touches the
horizon needing for that an infinite amount of acceleration in a finite time
t; in system B the observers are initially inertial and are smoothly
accelerating, so that they become of Rindler type asymptotically. Systems C

(the well Known Rindler coordinates?2), E, F and H have two event-horizons at
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constant 1* and 175 in system E the horizons are of two different types. The
last system I covers only a compact region of Minkowski-space; it is a very
pleasant figure to look at, where one canp most easily see one of the important
properties of the orthogonal separable coordinates, that is the fact that the
coordinate lines are in each case confocal lines in the Minkowski sensel8,

Other informations about the separable orthogonal systems of
coordinates can be seen from Tables 1 and 211, The acceleration a at the curve
X = const., is given by:

2
1 &e<n > z 2/
a = = H 20
3 o X 2 2 32
20 {tY +« 2 )

A is the proper-time integration of the acceleration:
+
H
A = 2z 2 — 21

@ and ¢ are the angles necessary to rotate the hyperbole so that its axis
coincides with the coordinate axis and the angle between its asymptote and
these axis:
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For the curves with T = constant:

d d -4 4 + (d e +d e JCd e +d e
1 2 3 4 | t
tg @ = ’ 22

2 2T 2 24T 2 =-2wT 2 27
d d +d d + {d e +d e )id e +d @ )
1 2 3 4 i 1 4 3 2 :
tge = ¢ . 23

For the curves with X = constant:
k]

| 2 -20X 2 2wX 2 -2wX 2 2wX
d d -d d ¢ ICd e v e D0d e +d e )
1 2 3 4 1 3 4 2
tg g = ' 24
—2uX 2uX
d d e + d d e
1 4 2 3

2 ~2wX 2 Z2uwX 2 -2wX 2 2wX
d d +«#d d + (d .e +d e J){d e +d ¢ )
1 2 3 4 1 3
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11} - Two new vacua

We now proceed to construct quantum field theory in the special
case of coordinate system B. We choose it for three reasons: its well Known
asymptotes; its technical simplicity; and Dbecause it gives a unique
opportunity to exactly study a transition from ipertial to accelerated
movement, which alows for the interpretation of particle creation in the
framework of only one system of observers. This has an obvious
episthemological superiority to the Rindler system. The straightforward
application of the recipe given here to other systems will be developed in a
forthcoming paper.

Our reasoning here is perhaps naive but we follow the criticism

of Hintonld zhoyt the apparent sureness of more ellaborated approaches; at
least, we are simpler. Like Fulting2 we merely calculate the sclutions of the
Kiein-Gordon equation in two systems of coordinates with the special bodndary
conditions that we call quasi-classical. After normalizing them, we calculate
the Bogoliubov-coefficient, that give the expectation value of the
number-operator in this basis over the vacuum of the cartesian plane waves. We
use the conventions and notation of Birrel, Davies?3,

We go back to the Klein-Gordon equation and choose a basis of
solutions to build up the Fock space., Equations 7 and 8 imply

F* 4+ (m Y + K > F = 10
26
2 2 2
G* ¢+ (m 2 + K »y 6 = 0,
with
WT,X? = F(T) « G{X). 27

To state the orthonormality conditions
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(U 1Y > = §(K=-L)) etc. 28
K L
we define the scalar product as
a - #
{U,0y = - J a¢ U o V 29
a
S

where 52 j5 3 Cauchy-surface and dS2 is a future pointing unit vector:

a 172 ab c n
ds = (g 4] € dx * ... * dx. an
bc...n
Now we choose the Cauchy-surface so that it is a coordinate 1line. This is
possible for all of our coordinate systems, as you can see in the figures. We
call “ext" the value of T where this happens, "min*®, *max" the extrema of X:
a ab

c
ds = n € X, 31
bc

with ¥ = Yext we have dY = ¢ and

&
dS = (d2 &X/ &2, 0 32
g0 that

- — - % [ -
{ulLu> = -ji Fd F d¢{ G G . 33

T

The choosen surface is in general not a Cauchy-surface but the boundary values
are such that this is indeed afforded. This is a standard procedure but it is
not unique as noted by Rumpf<9d, Equation 33 implies

| i
I = % |
| G d G ! 34
| L

We will say that a given mode is natural in a domain if it is
quasi-classical thare. This means that

g » A 35

in the Ansatz
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U = A exp (if). 34

In this 1imit the Klein-Bordon equation transforms into the Hamilton-Jacobi

equation:

.
S (T,X) = ¢ j

j 2 2 2 j 2 2 2
daf ¢ K + m Y (D + lax (K + m 200 39

gives the asymptote of the quasi-classical solution.
We illustrate this in the special case of the coordinates B,
that is,

t +x = 2/vi sinh { w (T + X )

4 49
t-x = - 2/w exp{w (T =~X).
With the new variables
i w7 -wT
] e
Y = | I =
w w
{ 41
. —wX wX
ie ¢
Z = | i =
w W

equations 26 are two Bessel equations with imaginary order iv, where we write

Yy = K/ w 42
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for simplicity. The quasi-classical asymptotes used as boundary conditions
select two orthonormal solutions:

2
in 1 K <o -1/« 2
U = H (mY) K (md), 43
K 2w iv iy
out 1 i K
U = — | — 3 (nY) K (m2). 44
K w ¢ -y iv

They are quasi-classical at Y 2 @ or + 0 and Z 2+ @ respectively, For details,

see referencell_

We may in general compare the two bases U, and uy through the
Bogoliubov coefficients A and B:
*

U = A u + B u,. 43
K Kk K Kk K

The vacuum states defined with the help of annihilation operators CK and Tk
are also related by means of these coefficients. In particular the expectation

value of the number operator of K-particles in the K-vacuum is given by:

2
{0 IN 1O » = [ Kk B 1, 44
K K K Kk

B

We now compare the two bases U!M and UPYY, The Bogoliubov

coefficient

o i out in %*

B = =-4{U s U > 47
KL K L

is, much like equation 34,

o i $ | K § KCe2Mogy g o 1
8 = <= | » [0 wre h 48
KL 2 2 widinw y.] -iv Y i I
K- - L ®
o
el
. LK,w20, K [y
iv 2 in |0
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- 313 =
g0 that
o i 1
B = 8 (K -~ L). 49
K L \
| 2m/w
j ] - 1

For these calculations we refer to chapter 3 of Magnus, Oberhettinger, Soni23,

Next we compare these bases with the cartesian one, that is,
with plane waves in the original coerdinates,

-1/2
uk = 1/2 (we) exp ( - i Cet - Kkx)). 20

In the variables (Y, 2}, it holds

t e -k Y 2
et-Kx= - [ ( ) (— - —) +tw e + K Y Z ]
2 W 2 Y

i r Y 2 2
¢ u = - — L (@ = K) (== 4 ms) ¢+ (e + KDY 2 ] u
T k% 2 F4 Y k

so that their limit when ¥ 2 D is

e -~ K
et-kx= ——— 2
2wY 52
L
i ¢ -k
O u = - Zu.
T K 2 Y K
L
The Bogoliubov coefficient
*
B = - LU0 1 ou 33
Kk K k

it a sum of two integrais:

.
|
1 = j X B X u (E LT, XD, x (T, X)) 54
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.
|

1 &= X6 OO u (LT, X, x (T, X)), 55

0 K T &

1f we put in equation S5 the expressions 350 and 352 we get the Fourier

transformation

1 e - K d2 e - K
. (———— — -i . 54
1 = [ -i ¢ ] J = K. 2> exp [ -i ¢ =) 2 ]

I{f is the integral of Iy in the variable -i (e~K) / 2wY. These two integrals

are easy to evaluate in the Limit Y = 026, After the inclusion of FK we get

out cart [ K exp (-m/2) e =K iv
B = { ) 57
Ki ] w(-iv)! 2 sinh m 29
and
-iv

in cart 1 -3/2 K ({e=K)/2m)
B = - — (sinh ™) - Re . o8
KK w ) (=iv)!

Their absolute square is

| out cart |2 1 1

B B — 5%
KK 2Tew 2m/w

¢ - 1

and

! in cart |2 -3 K 2 [((Q-K)/m)

B | = (sinh w) Re | . 40
KK 2 |_ (~iv)! j

e w

We discuss these results in the following section.
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compared to the cartesian one, a thermal state with temperature

e = w/ 2k .
0 B

- 15—

IV - Conclusions
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of the last section show that the out-vacuum s,

61

After Tolmann27 thic means that in the proper frame the temperature 1s

-1/2
8 = B (g )
0 00

or, with

tim = exp (2wX)
v30 a0 P !

w exp (—uX)

(=] =
2wk
B
where
a = 1im a (T,X)
o Y=0
Also,

27K
B

w exp (wX)

62

63

64

45

compared to the in-vacuum, the out-vacuum has the same

Fulling temperature. The

thermal state. We illustrate this situation in the folowing diagramm.

in-vacuum compared to the

cartesian ohe

is not a



CBPF-NF-026/86
= 16 =

The "natural!® vacua of the system of coordinates B:

in . . ? T fm./.szq e out
9..'.. E .; = ag / 2mkp
) cart ..
The Fulling effect make this result expected. The observer
defines its "natural” - in accordance with our boundary conditions - vacuum as

long as it is inertial; then it accelerates and reaches a uniform acceleration
ay, thus seeing a thermal sea of particles around it, with temperature 8 = a5
/ 2rkg. For this observer the "natural® particle number is not concerved.

| The obtained temperatures are in accordance with the result of
Sanchez for massless particleszs. It is not surprising, that the in-vacuum is
not a perfect vacuum as compared to the cartesian one: the exactness of the
approach forces the in-states to contain vestiges of the out-one.

In a following paper we intend to extend this analysis to the
calculation of other physical magnitudes, tTike < T, 2. Likewise we will
consider with the other separable orthogonal systems of coordinates. We hope
then to be able to atack the problem in a more abstract level, guided by the
our hew Knowledge on non-static systems of coordinates. The generalization to
3 dimensions allows the immediate verification of a speculation of Grove,
Dtewi?l9, that says that rigidity is the criterium to choose the *good”
detector by handling a system of coordinates that is rigid but non-static.

We want to thank H., Rumpf for suggesting the subject of this
work, R. Beig and H. Urbantke for their assistance and the whole Institut fuer
theoretische Physik of the University of Vienna for its hospitality during my

stay there.
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Figure Captations

1: The system of coordinates A
Drawn are the curves T = n/4 from X = -1 to i, and X = n/4 from T =
-1 to 1, where n = -4, -3, ,.., 4, The t-axis is the vertical, the

x-axis the other one; the primes go from -1 to §.

2: The system of coordinates B

Drawn are the curves T = n/3 from X = -1 to i, and X = n/3 from T

-1 to 1, where n= -3, -2, ..., 3. The axes are as in figure 1.

3: The system of coordinates CR

Drawn are the curves T = n/2 from X = -1 to ty and X = n/2 from T =
~1 to 1, where n = -2, -1, ..., 2. The axes are as in figure }.

4: The system of coordinates (3
Drawn are the curves T = n/2 from X = -} to 1, and X = n/2 from T =

-1 to 1, where n = -2, -1, ..,, 2. The axes are as in figure 1.

3: The system of coordinates D

Drawn are the curves T = n/3 from X = -1 to 1, or X=n/3 from T

-1 to 1, where n = -3, -2, ..., 3. The axes are as in figure 1.

é: The system of coordinates E,

Drawn are the curves T = n/3 from X = -{ to 1, or X = n/3 from T

-1 to 1, where n = -3, -2, ..., 3. The axes are as in figure 1.

7: The system of coordinates E_

Drawn are the curves T = n/3 from X = -t to 1, or X = n/3 from 7T
-1 to |, where n = -3, -2, .,,, 3. The axes are as in figure 1.

8: The system of coordinates F,_

Drawn are the curves T = n/4 from X = -1 to 1, or X = n/4 from T

-1 to 1, where n =0, 1, ..., 4. The axes are as in figure §.
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Figure

Figure

Figure

Figure

Figure

%: The system of coordinates F_

Drawn are the curves T = n/4 from X = -1 to 1, or X = n/4 from T =

-1 to 1, where n =0, 1, ..., 4. The axes are as in figure 1.

The system of coordinates &
Drawn are the curves T =n from X = -3 to 3, or X =n from T = -1
toc 1, where n = -3, -2, ..., 3. The t-axis is the vertical, the

x~axis the other one; the primes go from -3 to 3.

The system of coordinates H,
Drawn are the curves T = n/2 from X = -3 to 3, or X = n/2 from T =

-3 to 3, where n =0, 1, 2, 3. The axes are as in figure 10.

The system of cocordinates H_
Drawn are the curves T = n/2 from X = 0 to 3, or X = n/2 from T = 0

to 3, where n = -3, -2, ..., 3. The axes are as in figure 10.

The system of coordinates |
Drawn are the curves T = nw/é from X = ~r tomw, or X = nw/é from T
= —w tom, wheren =10, 1, ..., 3. The t-axis is the vertical, the

x-axis the other one; primes go from -1 to 1.
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Figure 10 Figure 11
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Table 1: The hyperbolic systems of coordinates
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Table 2: The parabolic and elliptic systems of coordinates

Transformation of

| |
{ |
Conformal factor d : coordinates ! Acceleration }
| I == 2 i I
2 G!I'I=(T+X)/vlé_d II
—_— (T +X) d | l d -3/2 |
| d [ - — (T + X) |
0 II i = (T =-X) /742 8
| — | |
i {8 1 2 2 l
2 (Tz XZ)I --—-d:t=-—d(T*X) X
2 I i I 2 2 3/2
d | E I 2 | (T~-X )
| | —_— x = — T X i
i i d | d §
' % %
BERIR 2
-2 2 21 —_—f t A —— T X | X
1T (T 4| d P 2 72 |
d i {8 1 2 2 (X =1 )
| —_— xm— (T + X))
I d | d
| H |
) | |
i | {
| I t = — —— sinwT sinwX |
| D | W i sin 2wX
(cos2wT- coszux): 0 ! ) iﬁw 3/2=
2 I : X = — coswl coswX = {cos2wT- cous2wX)
w
l | t
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