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ABSTRACT

We use a real space renormalization group procedure recently
developed for calculating equations of stateé for geometrical prob
lems/, to treat bond percoclation in the anisotropic square lat
tice. By choosing a convenient self-dual cluster, we w<calculate,
for all values of the occupancy probabifities p and P, {along the
¥ and y axes respectively), the order parameters Pm(px,py) . and
Pz(px,py) respectively associated with the complete percolating
infinite clustér and with its backbone. An interesting difference
appears between these two quantities whenever one of the occupan
¢y probabilities, say py, equals unity: ;Eﬂ_Pw(px,py) is discon-
tinuous at p,=0 {where P_ jumps from 0 t'oyl),wl'lereas ;i_.:lll- Polz(px,Py)
coniinuously incheases from 0 to 1 when p_ increasesyfrom 0 to 1.
Through a convenient extrapolation procedure which inclﬁdes the
use of the best available values for the critical exponents B8 and
BB, we obtain values for P_ and Pz which are believed to be nu-

merically quite reliable. In particular, P_(p,p) %A'(p-1/2).3'(8=5;?36
B
and A=1.25) and P2 (p,p) ~aP(p-1/2)® (8% =20.53 and AP =z1.92).

Key-words: Percolation; Equation of states; Backbone; Anisotropic
square lattice.

PACS INDEX: 05.20.-y; 64,10.+h; 75,40.-s; 75.40.Bw.
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I. INTRODUCTICN

The real space renormalization group (RG) techniques are employed main
ly to evaluate critical points (or more generally critical fron-
tiers) and exponents. However, in principle nothing precludes their
use to calculate variocus thermodynamical quantities (free energy,
specific heat, order parameter, susceptibility, etc ) for the en
tine nange of the external parameters (typically temperature)..As
an example, we can mention the work by Niemeijer amivanleanmm[ll
where a RG formalism is developed for calculating several thermo
dynamical quantities.

(2] have developed a RG pro-

Recently, some of us
cedure which . provides equations of states corresponding to statis-
tical geometrical problems {not necessarily related to Hamiltonian
formalisms). The approach is as simple as a Mean Field Approxima
tion, preserving nevertheless the criticality of the problem. It
has been used for calculating the order parameters (site mass den
sity) for the complete percolating infinite cluster and for its
backbone, respectively noted P_(p) and Pz(p), for all values of
the bond occupancy probability p on an iéotropic sguare lattice.

The aim of the present paper is to extend the above type of
treatment to the anisotropic square lattice for arbitrary occu-
pancy probabilities P, and py (along the x and y axes respective
ly). By using a convenient self-dual cluster (see [3] and refer-
ences therein) we calculate Pw(px,py) and Pﬁ(px,py). In Section
IT we present the;RG formalism and the results; in SectionIII we

apply a quite performant extrapolation procedure (first intro-

ducedlﬁ] to improve RG results for surface tension in Ising sys-
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tems) to obtain numerically reliable results for P, and P:; we

finally conclude in Section IV.

II. FORMALISM AND RESULTS

We consider a square lattice whose bonds are randomly and
independently occupied (or "active") with probability P, for the
x-axis and py for the y-axis. To construct the RG recursive rela
tions in the (px,py) space we adopt the treatment[3’5] based in
the self-dual clusters indicated in Fig. 1, which have proved to
be extremely performant for the; an@sotropic square lattice. Note in Fig.l({c)
the existence in the cluster of two entry points and. two exit
points; if the configurations is a spanning one, it will simulate the: in
finite percolating cluster and all four entry/exit points will bheée
considered to belong to it. The cluster of Fig. 1l(a) (Fig. 1l{(c))
contains one {(nine) relevant bonds, and presents consegquently 2
(29) different occupancy configuratiohs. The analysis o©f these
configurations shows that only half of them percolate, and are

responsible for the following RG recursive relations[3’51;

o
n

Py

4 - 5. 3 - 5,2 2 -y 23
P, + 4Pxpy(l-py) + prp.y(l—py) + 4pxpytl-py) +

+ .

5,. .. 4 4 4 - 4 3
P, (3=Py) " + 5P, (1-p )P +20px(l—Px)py(1_py) +

+

27pi(1-px)p§(1-py)@ i 149:(1-Px’PY(1fP,)3 ¥

+

2p, (1-p,) (1-p)* + 108} (1-p,) &} + 368} (1-p) %0} (1p ) +

+

4083 (1-p,) ?p% (1-p ) 2 + 14p] (1-p,) p (1-p)°
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+

3 2 4 2 3 4 2 33
Px.(l-px) (l—py) + pr(l—px) py + 26px (l-px) py(l—py) +

+

2002 (1-p,) *p% (1-p ) % + 4pZ(1-p) %p (1-p )7

+

2 2 4
3p, (1-p ) P} (1-p ) + 6p (1-p ) P (1-p))

4 2 2
3p, (1-p,) 'py(1-p )" = £ip ,py) (1)

+

and
p; = f(Perx) (2}

In Eq. (2) we have taken into account the px:tpy symmetry of the
problem (see Fig. 1l(b)). The flow diagram determined by Egs. (1)
and (2} is shown in Fig, 2. The exacf critical linel®] pxépy;l is
recovered, as well as the correct universality classes (one di-
mensional percolation for px=0 or py=0' and two dimensional per
colation otherwise). The "correlation" length critical “~exponent

v corresponding to anisotreopic square lattice is given by

£nb £n2

YV o= = 7
£nx  En(249/27)

= 1.042 (3)

where b=2 is the RG linear scale factor and AE[df{p,pVﬁp]p 1/2

The percolation "order parameter” is defined as follows:

N (p_,p,)
P (R, sby) = Lim —=—X_t_ (4)

L+ L?
where L is the (dimensionless} linear size of a (finite) square lat
tice, and NL is the average number of sites which belong to the
biggest cluster (which, in the L»= limit, generates the unique .in

finite percolating cluster). Consequently P_ is the probability
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of randomly choosing a site which belongs to the infinite cluster.
Following along the lines of Ref. [2], we associate a dimension-

less "mass" m, with each site. The parameter m, changes under re

normalization as follows

m' = g(px.py)mo {5)

where g(px,py) satisfies g(l,l)=bd {(d is the dimension and equals

2 in our case) and has to be established. The order - parameter we

are looking for is given by[zl

. mén)(px.py)
Fe BBy e T P a ©)
' 0

where mgn)(px,py) is the n-th iterated mass value, through Egs..(l),
(2) and (5), starting from arbitrary values for m, P and py. In short, the
procedure consists in choosing, for given Py and py - such that
px¥py2;l, an arbitrary initial value for m, (e.g., m&:l), and
then performing the recurrence determined by Egs. (1), (2) and
(5) up to arrival to the fixed point (p,,p ,m) = (1,1,m57)  which
is always warranted by the fact that g(l,l):bd): Pw(px,py) is

()
0

proportional to m . For P, and py such that px+Py451* the pro-

cedure automatically yields P_=0.

Let us now determine g(px,py). We impose[zl

the average mass
of the spanning cluster to be preserved through rencrmalization.
The set of configurations of cluster of Fig. 1(a) provides. Zwop;.
With respect to the cluster of Fig. l(c}, two typical configura-
tions are indicated in Figs. 3(a) and 3(b), and their respective

. . ' 3 2 3 3 2_2 2
contributions are 7m0px(1-px) py(l-py) and 6m0px(1—px) py(l—py).
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When all the configurations are taken into account, the preserva

tion.

of the average mass yields

1 |
2m0px

(8p7p% + 32p]p (1-py) + 48pyp% (1-p )" +
32p0p (1-p,) % + 8p] (1-p ) * + 40P} (1-p,) B} 4
158p; (1-p, ) b) (1-p,) + 2109} (1-p,)p2 (1-p )% +
lOSpi(l—px)py(l-py)S + 14p’ (1-p_) (1-py)" v
80pi(1-pxlzp; + ZBﬂpi(l—px)ng(l-py) +
298p> (1-p,) P2 (1-p ) 2 + 96p] 1-2,) ’p (1-p )7

6p2 (1-p) 2 (1-p )" + 7297 (1-p )Py

10ap20p) %83 (1-p ) + 134p% (1-p,) P2 (1-p )% ¢

2 3 3 4 4
24p, (1~p,)7p (1-p )" + 24p (1-p, ) 'p, +
4 3 4 2 2 -
40p_(1-p_) pyll—py) +18p, (1-p ) Py(l-Py) Im, =

h(px,py)mo {7)

Comparison with Eg. (5) and use of Eq. (1) provide

g(lePy) = h(Pfoy)/z f(erPy) (8)

the formalism being thus c¢losed. The fact that for establishing

Eq.

(7) we have used the clusters of Figs. l(a) and 1l(c) destroys,

strictly speaking, the pxz py symmetry of the square lattice (the
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same problem would of course arise if we were to privilege the
y-axis instead of the x-axis).The numerical discrepancies are.-how
ever practically neglectable sver the entire range of P, and py.
The RG flow determined by Egs. (1), (2) and (5) (with Eq. (8)) is
illustrated, for px=py, on Fig. 4. The results obtained are in-
dicated in Table 1 (upper row) and Fig. 5. The critical exponents
(occurring along the entire.two-dimensional=crﬁﬁsal]inehp£43=1y
and critical amplitudes (occurring at px=py-*1/2) are indicated
in Table 2.

Let us now focus the backbone of the infinite percolating
cluster {(all dangling bonds or sets of bonds are to be eliminated).
The corresponding order parameter Pz(px,py) is calculated, within
the present RG procedure, in precisely the same manner as for
Pm(px,py) but substituting Eq. (7) by the fellowing one:

B' . _ 5 4 a0 5 3. - 5.2 . 42
2m, p,' = [8pyp . +30pip (1-po) + 42p p_(1-p )" +

+ 26p3p (1-p)* + 6p](1-p )" + 38p%(1-p )0} +

+ 142p} (1-p )] (1-p ) + 178p{ (1-p )pl(1-p,)? +
+ 860} (1-p )p (1-p,)° + 1203 (1-p,) (1-p )"+

. 70pi(1—px)2p; + 234pi(l—px)293(1-py) +

+ 246pi(1-px)2p§(l-py)2 . a4pi(1-px)2py(L13)3 .
+ Gp:(l—px)z(l-py)4 + SBPiil—px)3p: +

2 3 3 : 2 3.2 2
+ 158p, (1-p,) ") (1-p ) +120p] (1-p) °p)(1-p )" +



CBPF~NF-024/85
—-7-

: 4
+ 24p%(1-p ) °p_(1-p ) + 18p (1-p ) %Py « 3spx(1-px)"p3(1-py) +
+ 18p, (1-p,) “p> (1-p ) *1 m] (9)

The results we obtain are indicated in Table 1 (lower row) and
Fig. 6; the two-dimensional critical exponents and critical am-

plitudes {in the limit px=py-+1/2) are indicated in Table 2.

IYY. EXTRAPOLATION PROCEDURE

In order to numerically improve RG results for the surface
tension of the ISing model, some of us developed[A] an extrapo-
lation technique ("single extrapolation procedure” (SEP). in Ref.[4])
which proved to be quite efficient. We intend to apply here the
same technique for improving the RG results for P_{(p) and Pi(p).
The procedure uses, as input, the exact {(or almost exact) values
for the critical point (pc), the critical exponents v and B {or
BB) as well as that of the slope of P_(p) (or Pz(p)) at p=l. Its
central basis is that the extrapolation should be "soft" (pofyno
miafl correction) if rescaled "natural” variables are introduced

in the problem. More specifically the asymptotic equation P_« (p_—pc)s
v/B

can be rewritten as y «x with xﬁt(p-pc)v and y=P , which de-
fines the natural varlables just mentionned (note that x and y are
variables which currently appear in standard finite size scalimgs).
It is in the (x,y) space that the peolynomial extrapolation will

be performed. Let us describe it in detail. We define
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% ( - P-pb vb
L) = [—2 (10)
l-pb
p-p_\"
x(p) = < (11)
1-pc
v, /B
¥, = (pa) °C (12)
gz (b )V/8 (13)

where Pr Vv and Pmb are respectively the critical point, "cor

b’ Bb
relation" length critical exponent, order parameter critical ex-
ponent and order parameter obtained within a RG which uses.clusters
corresponding to a linear scale factor b; P.r V and 8 are the
exact (or best a#ailable) values for the corresponding parameters

(hopefully lim p, =p_, lim V=V and lim Bb=6); wa is the extrapo

b+ b+ breo . .
lated order parameter we are looking for (hopefully 1lim Py =
b
= lim B = poxact, x, and x vary from 0 to 1 when p varies from

o0

the critical probability to 1. We introduce the follewing relation:

y = £ Xy, (14)
where the correction function fh(x) has to be found. For p=1

(hence x=1), both y and y, are exact and equal to unity, therefore

fb(x) satisfies
fb(l) = 1 (15)

Furthermore, relation (14) implies
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-9 -
apg_ df, (x) v 4P _
¥y = = b vV_, b b (16)
B dp |p=1 dx |x=1 l-pc Bb dp {p=1l
hence
at, {x) l-p v _
b el M.k ¢,) an
dx x=1 v B 'Bb .
with
c, = (deh/dp)p_1 (18)
and
= _ exact
C = (dpmb/dp)p-l = (dP_ /dp)p=1 (19)

where we have imposed that the slope of Pmb at p=1l equals the exact
one (currently known, through simple arguments, for the particu-
lar lattice under analysis}. Moreover, the correcting function
fb(x) has been introduced mainly to redress the possibly wrong

slope of P_. at p=1 (fb (x})=1 ¥vx, if the exact slope is reproduced

b
by the RG), and we want its effects to gradually relax while ap-

proaching P, (hence x=0); it seems therefore sensible to demand

dfb(x)
- = 0 (20)
dx x=0

The simplest function which simultaneously satisfies conditions

(15), (17} and (20) is the parabola
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l1-p v .

£,00 = 1+—= (-2 ¢, -2 ) (1-x?) (21)

The expression for the correcting function is now uniquely deter
mined; however the extrapolation procedure is not yet closed, as

we still have to indicate the arguments of y and Yy in Eq. (14). We

postulate the following transformation:
%, (P) = x(p} (22)

Summarizing, Eqs. (10)=-(14) and (22) lead to the following extra

polation algorithm:

pP-p_. Vv p-p_ v/v. v /B B/
B, (0) = (£, [C2) ] (p, o+ (Lopy o) By ¥ 1y (23)
1-p, 1-p,

which, together with Eq. (21) completely closes the procedure,
Eq. (22} is the central assumption ¢f the present procedure
and states that a kind of Law-0f corresponding stafes holds for
the RG approximate functions {wa(p)}'associated with different
cluster sizes. Note that Eg. (23) becomes identically satisfied
if, in the b+~ limit, P, > P s ¥

+v, Bb+B and C_+C (in short, if

b

b
(p) for increasingly large clus-

ters). The present formalism essentially reproduces that used in
Ref. [4] (for the surface tension) for the particular case. B:= (d=1l}v
and 8b==(d-1)vb (we reéall that the singularities of the surface
tension and the correlation length are, in general, intimately re
lated). For the d=2 Ising model the present extrapclation proce-
dure yielded[4] errors inferior to 3% (1%) for the b=2 (b=5) RG

approach, over the wholfe domain of temperatures. The main interest
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of the procedure comes from the fact that the knowledge of common
ly available iﬁformation (p.,v,B and C) and a Adinglfe RG approxi-
mate result provides a curve which is hopefully satisfactory over
the entire domain of bond concentrations.

In our present b=2 RG approach we obtain the P_ ré%ults in-
dicated in Fig. 7 and Tables 2 and 3, where we have: -used- that
p,=P_=1/2, v=4/3, v «1.042, 8=5/36, B, =0.095, c=01% ana c_-o0.
The results correSpohding to Pz are indicated in Fig. 8 and Tables
2 and 3, where we have used that 8°20.53!%), 8% 20.334, cP-0 ana

B

IV. CONCLUSION

A real space rencrmalization group formalism (based on an ap
prooriate ¢luster and extending a previous onelz]),has been de-
veloped to calculate, for all bond concentrations on an anisotropic
square lattice, the infinite cluster and backbone order —parame-
ters (Pw(px,py) and Pz(px,py) respectively). They exhibit an in-
teresting difference: while'Pm(px,py) presents discontinuities at
(p,sp,)=(1,0) and (0,1), P:(px,py)_contiﬁuously vanishes while ap
proaching the eritical line px+py=l {exactly recovered within the
present approach). The treatment slightly destroys the pxi py sym
metry of the square lattice. It should be not hard to restore it
by performing ad hoc averages (frequently adopted in the litera-
ture) between the\px- and py— equations: this seems however un-
worthy, the numerical breakdown being practically neglectable.

In order to obtain quite reliable values along the px=py5p
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axis (isotropic square lattice), we have implemented an extrapo-
lation procedure which has proved to be very efficient in other
similar problems. Our best proposals appear in Table 3 (exact val
nues for P, and Pz are unavailable in the literature). In the vici
- nity of the critical point p_=1/2, we obtain P_v A(p-1/2)°  with
6536181 and A=1.25, and PP~ aB(p-1/2)B" with 6% =0.53(9] ana
abz1.92, |
In conclusion, within considerably simple real space renor
malization group frameworks (not harder than say Mean Field ap-
proaches), it has been possible to obtain numerically reliable re-
sults for "geometrical" order parameters over the entire range of
the external parameters. The extension of this type of techniques
.to other quantities (both geometrical and thermal)rand other lat

tices would be very welcome.
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CAPTION FOR FIGURES AND TABLES

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7

Fig. 8

Table 1

Table 2

Self-dual cells (the arrows represent the entrances to and
exits from the cell). e (o) denotes internal (terminal)
site.

RG flow diagram. P{(NP) denotes the percolating (non per
colating) phase.

Two typical configurations appearing in the calculation
of the function g(px,py) in Eq.(5).

Flow diagram in the m -p space (px=py=p). The dots in-
dicate the values of the order parameter P_{(p}, where p
corresponds to the starting point of the flux line.

Typical sections of the RG order parameter Pw(px,py)ia)
fixed Py’ (b) fixed nE(l—py)/(l-px).

Typical sections of the RG order parameter Pz(px,py)Ja)
fixed'py: (b) fixed nE(l-py)/(l-px).

RG order parameter P_ as & function of px=pyzp; The up-
per full line corresponds to our bs=2 proposal; the dashed
line is the corresponding extrapolated curve; the lower
full line is the b=3/2 result of Tsallis et al.lz]; the

dots represent Monte Carlo data[lll.

RG order parameter P: as a function of P,=P =Zp. The full
lines correspond to our b=2 proposal and the b=2 result
of Tsallis et al.; the dashed line is the extrapolated
curve. |

RG values of P_ (upper value) and Pz {lower value) for
typical (px,py). ? refers to the fact that this value is
not uniquely determined.

Present RG and extrapolation,Tsallis et al.RG[Z],amiex—
act or Monte Carlo results for the critical exponents
(v,B,BBf and amplitudes (A,AB) associated with the quan
tities P_ and P. (see the text). (a) Ref. [3] and refer
ences therein; (b) results obtained from Ref. [2]: (c)
these (exact or almost exact) values are input (and not
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output) within the present .extrapolation procedure; (d) ex-
act: Ref. [7]; (e) exact: Ref.[8]; (f) Monte Carlo: Ref. [9].

Table 3 ~ RG and extrapolated order parameters P_ and Pz for the
isotropic case (px=pyzp).
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CBPF-NF-024/85

- 26 -
P, P,
P
RG(b=2) | extrapolated | RG(b=2) extrapolated

0.5 0 0 -0 0

0.52 0.814 0.721 0.380 0.241
0.53 0.844 0.786 0.434 0.335
0.54 0.865 0.791 0.476 0.346
0.55 0.882 0.814 0.512 0.389
0.56 0.895 0.833 0.543 0.427
0.57 0.906 0.849 0.570 0.462
0.58 0.915 0.863 0.594 0.495
0.59 0.923 0.875 0.616 0.525
0.60 0.930 0.886 0.637 0.553
0.65 0.956 0.926 0.720 0.674
0.70 0.972 0.952 0.783 0.769
0.75 0.982 0.969 0.834 0.845
0.80 0.989 0.982 0.877 0.905
0.85 0.994 0.9%0 0.913 0.951
0.90 0.997 0,996 0.946 0.982
0.95 0.999 0.993 0.974 0.999
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TABLE 3




