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ABSTRACT

We numerically discuss the assymmetric map x'=1-ef-aihdzi(i=1,2
respectively correspond to x>0 and x <0). Severe diffefences ap-
pear with respect to the Feigenbaum scemu.‘m (-sl.- €)= 0; a1'= ay: zl=zz)_,
the strongest corresponding to simple discontinuity (el‘#EZF a,
=a,; 21= zz) in which case many inverse cascades are observed. The

whole set of these cascades can be seen as a new road to chaos.

Key-words: Chaos; One-dimensicnal maps; Assymuetric maps; Univer-
sality class.
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Since the pionner work of Maytl]

; the maps on the interval
(one-dimensional dissipative maps) have been object of increasing
interest, both due to their intrinsic mathematical richness and

to the large number of physical systems[2]

which experimentally
display transitions into chaos via Feigenbaum bifurcations. One
of the most studied maps is the following one (see [3] and refer
ences therein): |

xt;l = 1—a|xt|z (z 21) (1)

For z=2, it is equivalent to the standard logistic map (xt+1= 4uxt(l—xt))-.
When a increases from 0 to a*(z) (a*(2) =1.401155...; see‘[3] for
a*(z)), the attractor (or long-time solution) of the map (1) ex-
hibits a sequence of periodiq‘orbits with periods Zk(k=0;L2,n.h
the k-th period appears at'ék through the pitchfork bifurcation
of the (k-1)-th. period; fhe sequence {ak} accumulates (k-+m{ at
a*(z), where the system enters into chaos. For a>a*{z), an in-
finite number of p-furcétion "windows" (p=2,3,4...) occur (in a
non trivial order})}, up to aMfz)(aM(z) ;2 for z >1) above which
no.finite attractor persists, and X, is driven to infinity. At
the precise value a==an(z), the map essentially becomes a . gene-
rator of random real numbers, as the density of the succeési&e
X, tends towards a distribution which is equivalent_to a comple-
tely "flat" distribution. With each p-furcation window we caﬂ.ag

[3,4]

sociate , for fixed z, a critical exponent §(z) (as well as

other critical exponents, e.g., a(z)) by considéring the location
of the successive p~furcations. For example, for the simple bi-

furcation series which accumulates on a*(z), we can define GkE

= (ak—ak_l)/(ak+1—ak), and verify that § Etiﬂ Gk is a finite num
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ber (8§(2) =4.669...; see [3] for §(z)). Each value of §(z) deter-
mines an univeaéazity cfass in the sense that it is shared, for
that particular window, by (almost) all one-~dimensional maps pre-
senting a single extremum of the [x[z—type.

The aim of the present paper is to numerically study the in-
fluence, on the above scenario, of assymmeiny in the ektremum, i.
e., different x ++0 and x +~0 behaviours: this typé of ass&mmetry
seems to appear in physical systems“’sl . To do this study we shall ge_rl
eralize the map (1), hereafter réferred to as the prototype map,

into

- z, .
I-¢;-a,|x | " 1f x >0,

= = 1 ' -
xt+1‘-f(xt) = l"f (51+52) if xt-O ' (2)

z
1 -c -—azlxt| 2 if X, <0 ,

2

with z,, z, 21 (the prototype is obviously recovered for ¢ =52=0,

1

a1=a2§a, and z.=2,Zz). This map yvields, for fixed z, and 2 a

172 1 27
sorte of phase diagram in the (el,az,al,az)—space, in the sense that
complex sets of p-furcation hypersurfaces can be defined therein
which eventually accumulaté on special hypersurfaces. One  impor-
tant such hypersurface corresponds to the first entrance into chaos
(generalization of a*(z)); another one corresponds to the disap-
pearance of finite attfactors (generalization of aH(z)). Another
interesting information concerns the evolution of the attractor
(set of values of x towards which X, tends in the t +« limit) as
a function of (el,sz,al,az). Finally, the Liapunov exponent A is
an important qu'aintity to be known (as a function of (sl,,ez,_«sl1 ,az)),
as it characterizes the sensitivity to initial conditions (A <0

corresponds to periodic orbits, and A >0 corresponds to chaotic

motion; A vanishes on every pitchfork bifurcation, and, in parti-
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cular, on the "first entrance into chaos" - hypersurface mentioned
above) . The exponent A is defined through
N-1

A(zl,zz) = lim & ] &n
N t=0

df (x)

dx

(3)

x=xt

To analyze the main consequences, on the "first entrance in
to chaos" and "finite attractor disappearanée" hypersurfaces as
well as on the evolution of . the aﬁtractor and of X, of the asym-
metry introduced in the map, we shall proceed by modifying one
type of parameters (the e£'s, the a's and the z's) at a time. We

shall therefore consider three cases, namely case 1 (el,ezfo, a=

=a25 a, and zl=225 z), case II (e:l= 32=0, a.l;E a, . and z1=zzzz),and

case TII (El=€2=0, a.=a, =a, and 21# zz),

1 72

Case 1: We have représented in Fig. 1(a), for =z =zz=2 and a,=a,=a,

1 1 72
the (51,52)—dependence of a* and a': note that a* and a' merge

for £y and.e high enough. It is also worthy to mention that: (i)

2
for €, #€,, a? depends bn‘z, contrarily to what happens for €1 =€ys
where all is independent from z; (ii) for Elﬁ €yr the attractor at-
tains |x| >1 for a's slightly smaller than those which make the
finite attractor disappear, contrarily to what happens for £1=Eys
where the two phenomena occur simuftaneously.

In Fig. 2 we have represented, for z,= zz=2 and a;=a,=a, the
a-dependence of the attractor and of A. Two typical cases have
been illustrated, namely (81,52) = (0,0.1) and (0.1,0). In both
cases a remarkable feature is observed: the appearance of windows
of inverse p-furcations. These p-furcations appear discontinuously
like tangent bifurcations, but do not present inteamitiency (these

facts become intelligible if the iterated functions f£(f(...£(x))),
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are represented, as square corners approach and cross the x'=x

bissectrix). A big (maybe infinite) number of sﬁch windows appear.
Within each of these windows the p-furcations accumulate for de-
ereasing a, but no chaos appears in the neighborhood of the accu-
mulation peints. For example, for (si,sz) ={(0,0.1), the first of
such cascades appears immediately above a=l. The sequence of pe-
riods (cycle size) is as follows: . .,.16+14+12-+>10->8 >6 4,

and they accumulate on a=1l. Immediately above this cascade we ob-
serve a coupnle of standard pitchfork bifurcations. Further on a new
inverse cascade appears as follows: ...33+29+25+21+17+13+9,
and then again a standard pitchfork bifurcation into a period 18.
Then another inverse cascade as follows: ...76r*58-+40-*22.-Aﬂxi
this cascade, no other standard pitchfork bifurcations are cbserved,
but instead more inveﬁse cascades: ...92+70-+48 +26, and then
¢..134 +108 ~82 ~56, and then ,..198 +142 +~86 +~30, and then ...124
+ 94+ 64~ 34, etc. Two simple rules emerge: (i) when standard pitch

fork bifurcations no more appear, most windows have inverse cas-
cades whose first element equals a previous first element plus 4;
(ii) within each window, the periods grow arnithmetically by ad-
ding the first element of the previous window. Inverse cascades
mixtured within the Feigenbaum scenario have already been regis-
tered in the literaturel®] for Hamiltonian systems, but while those
exhibit few windows with continubué bifurcations whose periods in
crease geometrically, the present ones exhibit many windows with
discontinuous p-furcations whose windows increasé arithmetically.
In the (el,ez) = (0,1,0) case, after a couple of standard pitch-
fork bifurcations (including, however, an unusual jump), an inverse
cascéde appears as follows: .;.22-+13-+l4-+10, and then ...46 +36
+ 26, and then ...120-+94 +68, and then ...246 +178 > 110, and then
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(new suprise!) the cascade reverses and becomes direct, now yeald
ing 110 > 152 +~ 194, . ., and then the period 42 appears (which precisely
is the arithmetic step of the direct cascade). All these features
are quite amazing on the whole, and give strong evidence of the
important role that discontinuities in the maps might have. Purther
more they are possibly nol foo hard Lo exhibil experimentally (e.qg.,
see in Fig. 2(e) the size of the attractor of period 6). Finally, note in.

Fig. 2(41) another uncommon fact, namely a discontinuity in A.

Case II: We have represented in Fig. 1(b), for z,=2z,=2 and &=

= ¢, =0, the (al,az) - critical lines which generalize a* (first

2
entrance into chaos} and aM {(finite attractor disappearance). On
the whole, the Feigenbaum scenario is preserved (with soft trans-
lation-like deformations); in particular, the set {Gk} approaches

the Feigenbaum value 4.669.... Summarizing, no important new fea-

tures are observed in this case.

Case II1: In Fig. 2 we have represented,ﬁm:al=€2=0 amizl%zz, the
a-dependence of the attractor and of A, Two typical cases have
been discussed namely (zl,zz)' = (2,4) and (4,2). 'I‘he former yields
a* =1.6414, the latter ylelds a* =1.3617, and both yield a'=2.
Below a*, the sequence of bifufcations is the same as that
of Feigenbaum, but a strongly diffe_rent behaviour appears,
as already . noticed[7], in the set {Gk}: see Fig., 3 {con-
venient way for presenting our results as well as the nume
rical ones obtained in Ref. [71). Above a* (chaotic region), the

relative sizes of the various windows are quite different from
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those of the zl= 22

to verify if the prototype sequence of high-order windows is pre

prototype. A further analysis would be needed

served.

We have verified that the Feigenbaum scenario for one-dimen
sional one-extremum maps is strongly modified if assymmetry is in
troduced in the extremum. Amplitude assymmetry (a, # a,) has a re-
latively minor influehce. Exponent assymmetry (21# zz) does not
seem to drastically alter the bifurcations sequence, but intro-
duces remarkable numerical differences while approaching the first
entrance to chaos: the unique geometrical tehdency'asﬂuﬁaked with
the set {Gk} disappears. But no doubt it is discontinuity at the
extremum (e,# ¢,) which introduces by far the strongest. perturba
tion into the system: the Feigenbaum pitchfork bifurcation scheme
quickly diéappears (while increasing a), and a possibly infinite
number of .inverse cascades of p~furcations takes place (scmetimes
mixtured with direct cascades). The p-furcations appear discon-
tinuously (like tangent bifurcations) but do not exhibit inter-
mittency (unlike tangent bifurcations). Within each cascade the
p-furcations accumulate on points in the neighborhood of which no
chaos is present (negative Liapunov exponent 1), in contrast with
the Feigenbaum road. Finally, the size of the periods grows, while
approaching the accumulation point, ardithmeticatly and not geome
trically as in the usual case. We are presently working to see
whether this complex picture remains somehoﬁ.similar to itself
within smaller scales while approaching a* (birth of positive
A's). If_éhis is the case, then uﬁiversality properties will e-
merge, and consequently the present scenario could be in .scme sense

locked at as a new road to chacs.
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CAPTION FOR FIGURES

Figc 1 -

Fig., 2 =

Fig - 3 -

Special cuts of the "first entrance into chaos" and the
ncinite attractor disappearance" hypersurfaces in the
(sl,sz,al,a ) - space for z,=2z, -2. (a) al-a2 za; (b) 81
=€, z0. For ¢ =0 and al_az,lt is a*=1.401155,..., and a —2.
We have used the initial point x, =0.5.

Influence of ¢

17 €gr Ay a,r 2, and z, on the attractor
set (x) and the Liapunov exponent (). Prototype: €,=
= 32=0, a,=a, Z a and Z,= zzsz,‘ case 1: €y gz;e-o,al=azza

and z,=2, = z; case III: e,=€,=0, &, =a,=a and zl;ézz. We have
used x, =0.5; an initial transient of about 1000 (30000)
has been left out of consideration for the x vs. a graphs
(A vs. a graphs); the calculation of x(}) has been done
with 400 (100000) points for each value of a, which was
in turn increased by steps of 0.0075 (0.0025).

Evolution of the successive ratios {Gk} for the zl=22=2
prototype and for the case IIT (zlf z,).
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FIG. 2
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