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ABSTRACT

The tensor notation elucidates the ambiguities arised in
the bond index definition, due to different matrix representa-
tions of the electronic charge distribution operatorl It is
shown that the orthogonalization transformation is the famil-

iar Lowdin matrix S1/2.

Key-words: Bond index definition; Non-orthogonal bases; Léwdin

transformation.
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Recent literature [1—3] has reported a polemics about the
definition of a bond index, utilized in turn for a definition
of valence [4]. We use the expression "bond index" to avoid
confusion with the classical 7 bond orders introduced by Coul-
son. We shall discuss here the closed-shell case, this does

not limit the argument.

We shall show that the difficulties arisen can be prevented
through the consistent employment of the tensor notation of
Ref. [5]:; the notation simply acknowledges the tensor charac-
ter of certain matrices appearing in. the calculations. Greek
letters shall denote indices of the orthogonalized basis {wu}
and Latin letters indices of the non-orthogonal basis {¢_} or
{¢b}; let us remind that the variance of the.first ones is in-
distinguishable, while the variance of the second ones must
be_discriminated [6]. The corresponding creation and annihila~
tion operators are w+(¢+) and ¥ (¢ ). The transformation link-

ing these operators is written as

+ a o+
qJu - g Tu %a
{1)
- ~=h
. w\) = }z) T\)b ¢

We have chosen to put the creation operators as covariant and
the annihilation operators as contravariant, but the opposite
is egually valid; the transformation properties of covariant

and contravariant guantities must obey
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a,a,t _ a _
g Tu(TU) = g Tu Ty = Guv (2)

For this reason we have put the indices as they stand, although
the transformation matrices themselves are not tensors [7].
The position of the Greek indices, as we have just said, is

irrelevant.
The metric tensor Sab

Sab = (¢ar¢b) (3)

ab

is the familiar overlap matrix, and 8" its inverse. The T

matrices are related to the metric by [7]

£ (4)

Sab = auTbu
u
Therefore, the transformation relating orthogonal and non-or-

thogonal bases is the Lowdin orthogonalization ([5,8]

o 1/2
T = 870, (5)

The electronic charge distribution operator ¢ in non-or-

thogonal bases may be written as [9]
- ~#2=b_ a
6 = éZé $257P0%, (6)

The matrix elemehts of the first-order density matrix 2fl are

b _ _z+2-b_ _ bc
zna = <¢a¢ > = 2 P sac (7)
where
Qoce ., .
Pbc = 2 Z‘: xlbxlc (8)
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and xib

is the contravariant coefficient of the b orbital, be-

longing to atom B, in the i~th wavefunction of a doubly occu-

pied level. Similarly, in the orthogonalized (LSwdin) bases

o is

- ﬁ+lh—

p = vy oy v (9)
H,V HEVTHTY

and the matrix elements of the first-order density matrix P'

are

- -

Pl, = WS> = (s1/2pg1/2) (10)

v nv
P is the matrix of which the elements are defined in (8).

It is easily shown that, by means of T (or Si1/2), egs. (7)

and (10) are linked by a similarity transformation

' 1/2,,.=1/2 1/2_.1/2
Puv = (8'/“21s )uv = (8'/°ps )uv {11)
If one works with an orthogonalized basis, the Wiberg index

[10] must be used:

Wop = Aél p2 {12)

Borisova and Semenov adoptéd eq. (12) for IEH calculations [11];

it has been used without modification in "ab initio" cases [12].

Non-orthogonal bases require the generalized Wiberg bond
index which we proposed [13] and applied to different systems
[13,14]:

b .a
=4 1P (13)
AB Zeh a'b

beB
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The introduction of the bond index W I__) amounts to re-

AB(AB

ferring to the second-order density matrix [5]. This one leads
to WAB or to IAB depending on whether the operator 5 is re-
presented by matrix elements in orthogonalized or non-orthog-
onal bases; obviously, different bases sghall yield different
numerical results. The Mulliken atomic-chargé is an invariant
associated with the first-order density matrix innom-orthog-
onal bases [15]; if orthogonalized bases are used, the invari-

ant will be the Lowdin charge. Similarly, IAB(WAB) is the in-

variant arising from the second-order density matrix .[5].

In either case, valence VA is expressed in the same way [4,15]

V., =

a W or vV, =

AB- A

IAB .(14)

Z L
B B
As to the comparison of the Mulliken and Lowdin atomic charges

made in Ref. [3], let us recall that they differ in second order
in the commutator [H,S] [16], where H is the Hamiltonian matrix.
(Actually, in Ref. [16] the comparison involves the Chirgwin-Coul--
son charges, which are equal to Mulliken's [6])}. Elsewhere, the
appearance of negative orbital populations has been discussed

[17):; by the way, as orbital populations are not scalars [5],

this feature may have only a relative importance.

In short, the tensor notation has proven helpfil in the elu-
cidation of the bond index definition. The quantities IAB and
WAB are related through a similarity transformation, characteristic
of the Lowdin orthogonalization procedure. Perhaps we could say

that there has been "much ado about nothing".
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