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Abstract

We preopose a formulation for the confining phase of Yang-
-Mills Theory and Quantum Chromodynamics (QCD) in the Contour

Space Leading to a Dynamics of Interacting Quantized Strings.

Key-words: Quantum contour formulation; Yang-Mills theqry;qul
tum chromodynamics.
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In the last vears a new formulation of Yang-Mills gauge fields
has been pursued by several authors and seems appropriate for
handling the compound hadron structure in the Q.C.D. model for
strong interactions. It makes use of the Ordered Phase Factor
as dynamical variable [2]}-[15], which takes into account more
explicitly the geometrical setting of the Gauge Theory than its
description by Gauge Potentials.

On the other hand, the strong coupling expansion from lat-

tice gauge theories shows that the fundamental concept is the
notion of lattice surfaces (sets of plaguettes) [31, thus raising
hopes that = the continuous 1limit of the lattice, at
the confining phase, leads to a dynamical description of Gauge
Fields by a Thedry of Quantized Interacting Strings [3],[61,[7],
(81,10),(13)
?in this letter we present an attempt to implement these i-
deas. Qur program aims at defining another continuous limit of
the lattice: the space of all possible closed contours, instead
of the usual Euclidean space, and propose a quantumf dynamical
system described by an action with the dynamical variable being
the Ordexed Phase Factor. These two formulations of Continuous
Gauge Theories are analogous to the well-known two phase-depen
dent lagrangeans which describe the continuous limit of Spin sys
tems [10].

We begin our analysis by considering the 4-dimensional lat-
tice action for U(N) Gauge Fields in a form closely analogous to

the 2-dimensional lattice chiral action [12]:

It is assumed throught the Euclidean Formulation of Gauge Theories.
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1

S, (UIT]] = )
4g2N (M (&p);(u,))

Tr{u”™ (T} UIT + Mg uoon) * Bech (D)

where Tr indicates the trace operation over U(N) indices, U[Tl]
is the Ordered Phase Factor around a simple closed contour T in lat-
tice; ] is the sum over all these simple closed contours and
T+ H((ii:;(u:\‘)) is the contour obtained from I' by addition of
a "Tooth" in the v-direction at the link I'((xt) ()" Finally
N is a normalization factor which counts the number of times
a given plaquette appears in the sum § .

{n}

The equation of motion for the action (1) takes the form

Hﬁ:

. =1 -1
& O+ T ysquunyte VI = QOO (T =Ty syt (2)

with _xte r.

The Quantum Lattice Theory, in the Feynmann functional in-

tegral formalism, is described by the partition functional:

z, = [H au[r 1.e”SelULT]] (3)
r ((x,) 3 ()
((%5)5 (1))
where [ dU[I'( Y3 ( ] denotes the normalized Haar mea-
NG, y )i
xz);(u)

sure in the manifold of configuration {U[I'( } of the lat-
xz);(u)
tice Gauge Theory.
The continuous formulation of (3), related to the non-con-

fining phase and describing interacting gauge particles, is given
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by the Yang-Mills partition functiomal in Euclidean Space R":

Z = ID[AU (x)]exp{-ld"x S[AU] (x}} (4)
M
S[A ] = 1 or(r F ) (5)
U 4g2 UV upv

Here M is the "Infinite Dimensional Manifold" of’Yang—-Mills Po
tentials with the appropriate normalized Functional Haar mea-
sure D[Au(x)] .

Let us now introduce the Contour Space, denoted by L', formed
by all closed oriented contours in R* T = {xu('r) }; 0<t<T and
pw=1;...,4. We can suppose this space ag another continuous limit
off the lattice, relevant to the confining phase of gauge theo
ries. The dynamical variable in the L"-space is taken as the
Ordered Phase Factor

-éAdx
wir] = 2 p{e’ ¥
N

¥} (6)
with ' € L* and AUG.M..We represent the "Infinite Dimensional
Manifold" of these W{I] by C“. After defining the "Physical
Space” L* and the dynamical variable (6) we have to construct
an action in C%-space. As the first step, we should define a
notion of integration in L*-space: the continuous limit of I
in (1). The introduction of fermions in the Contour Space will sugg{egi:

a natural one. The symbolic sum
) O[T, ] (7
{x (1)} 172
M
xu(o)
xu(T)

1l
o

n
bl
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here ¢[I'] denotes an arbitrary functional in the L'-space, should

be understood as

[ 4T Jdu[rx

1¢(T ] (8}
o T 1¥2 *1¥2
with
1 {T%2(0)
Idu[I‘x x ] = n dx(T)de(T)exp{--J =122 4l (9)
172 x(0)=x1(T) 2 o e(1)
x(T)=x2

We observe in (8) the use of reparametrization invariant action
fofy a massless particle in the Brink-Vecchia-Howe formulation
(17} and it is used here as a purely geometrical object [13].

Introducing the dual string operator in C"-space

1 82

ﬂ =
() |x'(‘r)|2 pr(T)z

(10)

the C“*-continuous version of the lattice operations

((xz);(u.v))
v 4 -
and F-rF+H((X£);(u;v)),‘we obtain the following formal €C"-limit

action of (l1l):

S[WIl]) = —— Jd"x] ar Jdu[rxx] Tr{W_llP].(a(I.)W[I‘])}
{11)

and hence the first gquantized Quantum Contour Formulation for

Yang-Mill Theory is given by the partition functional
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-5 -
%2,y = | T AW[T) exp{-SIW[T]]} (12)
(<) .
(T)
.
with T 4dW[l) being the U(N)-Functional Haar Measure in C".

(r)
The formal C*-continuous limit of equation of motion (2) is

given by:

2
1 1 & wrn.wir1™h
4g2 |x*(1)?2 Gxu(tlz '
. 2 .
2L oy —2 § wiry~} (13)
4g? |x* (-7) |2 Gxu(-ﬂz

with the reparametrization invariant condition

¥ 8 wiry1 -0 (14)

We note that all solutions of the Evolution Equation of Dual

Quantized Strings,

1 _ 8% wir] = 4g?B* WIT) (15)
Ix* (1) |2 8x (1)?

dx 5
Y 2 wrl=0
dar dx
u
where B is a mass parameter, are also solutions for evolution
equation (13).
In order to explain the proposed treatment of fermions in the
L"-space we consider the effective partition functional for the

composite mesons relevant for scattering process involving the

vacuum peolarization by quarks

++ 4 .
It is ugeful compare with the Feynma 1 1
It 58 ueeful [14113. ynmann loop measure for Wilson loops anal
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Zow (3 (x)5T] = | T aw(rje - St¥Irll
" (r)

Det[(iy B + 1y, J )1 (WIT]) (16)

where in (16) the functional fermionic determinant should be
exéressed in terms of W{I']l. For this task we make use of the
Proper-Time formalism as in [1],[13]. Nevertheless, care should
be taken in applying straightforwardly the Feynmann integral
to represent the propagator of a particle possessing fermionic
degrees in the presence of an external gauge field (16]. We
avoid this complication by squaring the fermionic determinant
ar‘d making use of the Proper-Time formalism for bosonic coloured

particles in the framework of [17]1,[18), IE:

v
{(17)

: - 1/2 _l.n ‘v -1
DEt(iYuDu+1YuJu’"Det(nﬁnu) Det(ﬂ. 2[1 Y ]ﬂmﬁmu) F )

and

oo

< ] Tr{W[I‘x x ](lJ[I'x X ,Ju]}

-1
mm ) "(x,,x,) =N
W 1772 1%2 1%2 1%2

dT[du[[‘x
0

(18}

where &[T o J ]=exp{—IJ dx } is the abelian phase factor, de
xlxz ]-l u ‘-l -

X. X
172
fined by the external mesons source Ju(x). Further, the colour
degrees of freedom of the bosonic particles were integrated out

in (18) producing the contour ordenation of the term exp{- Audxu}.
r

The final expression for the fermionic determinant reads:
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=] + o0
Det (D D )]'/2 = 'exp{-l N ] ax I d4x11d“[r )
R 3

1

s - O

TEWIT, o 1IOIT, o o3 (19)
- ® 38lym
pet (l-Lv*, v 1 @D )T F, ) - expl-] (&) Mo
n=)
+0 -
4 by
J d xl...d xn[ dT&...dTanu[lexZ]...dulrx x ]
n"1
- 0O
§
Splly, +Y., leeoly, v, 1)Tx{ (WL _ 19IT A
SR T U M P R e
ulvl 1
8
vee ——— (WIT 18 [T J 1) (20)
80, . (x) XXy X%y M
Uy m

where Sp denotes the trace over Dirac matrices and

£

2
§ = Limj dT.T _f - (21)
80,y (x(s8}} 4,4 6x, (s+ -5) 8x,, (s—;)
- £ '

is the Polyakov's analytical expression for the Mandelstan Path

Derivative. As the operation S — divides the contour T

89, (%) 1
into two pieces through the point x, we have that the C'-inte-~
raction action for fermions is closely anologous to the Joining
"and splitting picture of the Theory of Interacting Dual Strings.
Defining g2?N = A%, this L'-contour QCD has as non - perturbative
.expansion parameter the "coupling constant” % similar to the

t'Hooft topological expansion of Euclidean QCD [19].

Introducing the contour currents
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j,(T,2) = % 544 (x(v)rz)ax (1) (22)
r
and making the approximation N-+< in C“, we have the following

expression for the meson propagator

Gzzc[Ju(x),P]

_ L
DGB(X-Y) T2

GJG(x) GJB(yl

Ju(x)=0
w ] +oo
1 arf as| giy av :
- 4‘ . [ - [ a'x, a ledu”"1‘1]d"[rxz"z]
o o ‘.
jq(T,x)jB(P'.Y)(TrW{FxlxI])(TrW{T;zle) (23)

with W{r] satisfying (13).

Formally DaB(x-Y) is proportional to the Free Contour Propa
gator (first quantized) connecting the initial contour: T to
the final.one T' if we restrict ourselves to the solutions (14),
{20),[21].

So, our conclusion is that an exact description of Gauge

Theories in terms of Quantized strings might be possible.
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