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ABSTRACT

We claim that the utilization of a linearized version of the
."static scaling hypothesis” has led to a widespread erroneous concep-
tion of the notion of "critical regime" based upon the occurrence of
deviations which, in fact, reflect essentially the effect of the
linearization. The discussion is illustrated here with the exact
results of the specific heat of several hierarchical structures cal-
culated in a real-space renormalization group scheme.
RESUME

Nous soutenons que l'utilisation d'une forme lindarisée de
'i'hypothése du "scaling statique'"a conduit 3 une conception erronée
de la notion de “domaine critique" bas@e sur 1'observation de d&viations
qui refidtent essentiellement les effets de la linéarisation. Nous
illustrons notre noint avec des résultats exacts de la chaleur spécifi-
que de plusieurs structures hiérarchiques calculée dans le cadre d'un

groupe de renormalisation dans l'espace réel.
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The utilization of a linearized version of tho static

scaling hypothesis (1,2) :

& . pdv o n! ‘e C o B

has led to the widespread belief that scaling ideas are applicable only
T-T

T.

exponents have effective values close to their critical limits ; at

in a restricted "critical regime" (say for < < 10 Z) where the
higher temperatures there would be a progressive cross-over towards a
situation where the effective exponents reach their mean field values.

More specifically, equation | leads to

22 T-T o
X == T,y = @@y (2)
an c
and Yu(T) - - -a-&% (3)
3a(—=—)
TC

has to reach one in order for the Curie law to be recovered in the high
temperature limit. We propose hereafter to write the Gibbs potential
near a phase tramsitiom

S e /Mgy vg , on=D . )
Following MA (1) we have introduced g, and g,, which are effective
"constants" in the.sense that they leave unchanged the singularity
of the free energy at Tc i they account for components at short wavelength
which play a role in the specific heat but need not be considered in the
case of the magnetization or of the correlation function G(k) which are
average values of long wavelength (small k) Fourier components. The

important point, though, is that we use the non linear variables n and t
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(t witl be defined later) ilustend of the lincar variables ' and t' ao

that [or g and g =0 oquation 4 gonoralisea the atatic scaling hypo-

thesis (i.e. equation 1) consistently with the original Kadanoff's

construction (3) : the free energy appears as a function of ueff %

extensive in the concentration of the Kadanoff's d--dimensional blocks
which is E-d by definition of the coherence length § 3 two conditions
define the two exponents which are believed sufficient to describe the
main features of the free energy : they state i) that the effective

moment of the blocks increases as E;d (@ <d), and ii) that £

Hef g

diverges as t ¥ where t cancels at T.. On differentiating equation 4

with respect to H one obtains

M= 2. :B)L(n/nY*B) , (5)
B = (d=dv
and
- M L Y
XT =y = & - (6)

+

In mean field (y = 1) we have ¥T = t:-1 which defines ¢t for T > T_ :
Y X e

T~-T
c
T .

£t = (7)
Kadanoff's argument takes advantage of a dilatation symmetry which
should be exact in the "eritical regime™, i.e. close enough to T,

where £ is large and we can forget about the details of the crystalline
structure which, on all Bravais lattices, obeys a translation symmetry.
For this reason the 'static écaling hypo;hesis" is in general linearized
under the form of equation ! (i.e. with the linearized variables n' and

t' substituted for the natural variables n and t). This supposes that the



CBPF-NF-021/86

53—
dilfarence botweon e.g. equation 6 amd ite linearized version 2 should

remaln negligible with respect to the physlecal effects which otharwlee

limit the validity of equation 6 and define the true critical regime.

This is obviously not the case for the ranges of the order of

T~T

T = £ 10 % which have been considered by most authors. Every evidence,
c

theoretical (4,5) and experimental (6-8), shows that this magnitude

(v 10 %) reflects essentially the artificial effect of the linearizatiom.

Thus the effective exponent

;(T) = - §_&I_IX¥:T_ (8)

3an( 7 )

which follows from equation 6 remains reasongbly close to its Fritical
(t + 0) limit over the whole range of temperatures (0 < t < 1}, while
its linéarised counterpart vy (T) = ;- (; - 1)t as given by equation 3
must attain a value of one when T + » (9) in order to reach the high
temperature Curie limit which was naturally present in Kadanoff's
assumptions and in equation 6. The latter yields (T =+ =)~ C/(T-TEF)
with a prediction TﬂF/Tc = v which works extremely well in some cases
(e.g. for the Ising square lattice we have vy = |.75 and |
TF/T, = =20n(/Z - 1) = 1.76275...). The mean field limit follows from
the fact that xT can be expanded in terms of 1/T : this property is
basic to the success of all high temperature expansions.

The purpose of the present paper is to show that we.avoid

similarly the introduction of unwanted features in the specific heat if

we utilize equation 4. We have in zero field

T
S(n=0)= - EE%%:Qlﬂa-(g(0)+go)(T5(2-a)tl"“+t2"“)-gl + euay

a=2=-dv <1 (9)
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and by furthar differentiating we obtaln

e (r) ..2 _
- 35_ noAac® - B (10)
B '1'c

instead of the usual linearized form

c (T) .
——— A't
kg

¢ 4 . an

The "constants" B or B' follow from the additiomal "constants" &g and

g, in equation 4., We mote that with equation 10 instead of equation i1,

i) we avoid the absurd implication of a specific-heat which would become
infinite when T + « in the case of a negative &, and ii) that the
simplest assumption which we can make on B, i.e. that B is actually a
constant, yields the very satisfactory feature that C (T) vanishes as

T-2 in the high temperature limit for any value of a. Equation 10 has
been already used, among many other trial functioms, to fit the specific
heat. In reference 10, equations 10 and 6 follow from a free energy

which has the form of equation 4 in the particular case of the Heisenberg
model with 8§ = 1/2 on f.c.c. lattice. The authors stress the excellent

agreement obtained with both expressioms over a large range of temperatures.

We hereafter present further evidence based upon the specific
heat at T > Tc of a number of hierarchical structures generated
from the well known b-sized, planar, two-terminal self-dual
clusters schematized in figure 1, We have worked with the q-state Potts

model which has the following Hamiltonian :

H==Jq z GUi'U- (Gi. - lazr"°lqv 'I‘i), (12)
<i,j> ]
where J # 0 is the coupling constant and <i,j> rums over all pairs of
first neighbouring sites of a given hierarchical lattice. Using the
real-gpace renormalization scheme, which is exact on such lattices, we
have computed the specific heat per bond C (T) as a function of the
temperature T. The procedure is similar to that detailed in reference ll.
However, in the expressiom of the free emergy of the equation 3 of this
» B 1 - "d
r%ference we must substitute gY(h) by L O/nb (y =0) and b ~ by

b 1= I/nb where n - 2b2 - 2b+] is the number of bonds in the basic

cell. For the hierarchical lattice equation 9 becomes {12)(13)
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a = 2 - Lli/y,r wharae Lli Iy the lattice lutriusle dlwewslon,

d; = ¢n(2b? = 2b + 1)/gnb , (13)

¥
and Yo is the thermal scaling index (AT = b T, where Aep is the thermal

eigenvalue of the renormalization transformation). Among other

advantages, a number of quantities are known exactly :

T, = aJ/kgen(l + /q) (¥ b, ¥ q) (14)
a=2 - L3 =2, ¥q, (15)
8+13 l/2-1-5
£n-—?72;1 see references 12 and 13)
8+7q “+q
c (T) 2 _3,-
T .2 J .2 J .3 547-3q-2 ; 1
—— ()T = () (@Rl ) ()T ———— o+ Q) (16)
T T s s T

(b=2, ¥q) for T+« .

Other quantites, like C (Tc) for ¢ < 0, can be calculated
with arbitrary accuracy (see table I)., These quantities cannot be used
as parameters that one is free to adjust in order to increase the per-

formance of the fit in an appropriate temperature range as is common
practice when dealing with experiments or even with high temperature

expansions.

In order to test the validity of equation 10 we have repre-
sented

€ () T .2 |

n |_E-—- Gf-) - B on the figure 2. More explicitely
B c

we have shown
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{" (T (' (T) lr ] ‘I"“"l'
| et = B i vi. Rulm ) y fur @< O
kB kB 1 T
c (T) T=-T
AN —— kB G:? va. nf T , for o >0 .,

The necessity to substract the regular part of the specific
heat at T_ imposes the condition B = C (Tc) /kB in the cases where
a < 0. For o>0 we have arbitrarily taken B = O in the plot of figure 2
and the linearity in this plot obviocusly suffers from the fact that we
have arbitrarily fixed this adjustable parameter that
equation 10 provides. In order to adjust B, in this case (i.e. for
q =8, b =2) we found no better way than to check which, among
several attempt values, makes the fit better in the vicinity of Tc'

This is done more accurately by working with the effective exponent

C (T) T T-T
a(T) = - din | —— Lo - B| /dan(— %) (17)
kB T2
T-T  ©
which is represented vs. T in figure 3, for different values of B.
Assuming equation 10 is exact an error AB °R B would introduce a
spurious contribution q(T) = ¢ = g = AB & capable of accounting for

the initial deviation which changes slgn when B is varied from5 to-8

€ with

in figure 3. In the figure 3 we have represented (T} vs. T
B w6 for the case q = 8, b =2 when >0, and B = C (Tc)/kB when

® < 0. The resulting picture is very similar to that obtainmed in
reference 4 for the effective exponent ;(T) deduced from the Padé
approximants to the susceptibility of various model systems. In parti~-
cular differences ;(T) - o result of the same magnitude (0.1) as the
differences ;(T) = y which were determined in reference 4 (this seems
reasonable if a sum rule such as o + 2B + y = 2 is expected to hold
between the effective exponents) We note that, starting with the
linearized static scaling equation 1, we obtained equation.ll frem
which we would have deduced an effective exponent ¢'(T) = (&-2) $§.+2,
If we start from equation 10 and then linearize (i.e. we change t into
t') to obtaln C(T)T /k T2

exponent o *(1) = aTe/T (see figure 4). Both o'(T) and o (T)

-0
= At' "+B we determine another effective

are compelled to reach fixed high temperature values (resp. 2 and O)
but only the latter yields the mean field result., This illustrates the

precarity of the statement that mean field exponents are recovered in
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the high temperature regime since this limit depends on the stage in
the calculations at which the linearization procedure is applied. By
contrast the natural exponent G(T) reaches a limit a(t = 1} which is
close to o (see table l) and for which equation 16 provides an analy-
tical expression for known B.

The general picture which emerges from this discussion can be
more easily expressed within the formalism of the confluent series
which introduce an additional infinite number of less divergent singu-
larities : e.g. equation 6 is generalized as

- o« .V
XT-tY(1+;Ait1) .

The effective exponent therefore can be represented by its critical

value corrected by a confluent series :
mi\J
- § Aw;v t WV
¥(I) =y - ~— =y +Iat
1 + LAt "
. i
i

(18)

On the basis of the present and former (4) evidence we claim that
effective exponents deviate from their critical limit to reach an
effective value which remains a good approximation to the critical one
rather independently of the range in which it is determined

and which differs from the mean field value. This means that E a, < ¢

=i —=m
whe&sem is finite and small (of the order of 0.1). If we are satisfied

with values of the exponents kmown to that accuracy ,wve may c¢laim that

the critical regime extends up to the highest temperatures.

~1
1
where the effective expouent becomes arbitrarily close to its critical

The real critical regime corresponds to the range t = a

value : its extension al_1 should be determined in each case and may be
small if 2| is large. The initial deviations observed in some cases
(c.£. (e)(d) in figure 3) suggest that a; may be large in agreement
with previous discussiouns (14). The high temperature regime, however,
should not be described as a "mean field regime" but simply as a regime

where exponents are determined with a limited accuracy. Indeed, as is
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well known, experiment usually fails to provide exponents which approach
the theoretical limit to much better than * 0.1 except when (as for
example in Helium)} the nature of the sample permits one to work very

close to T .
c
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Table 1

b q o B a(t-l)l Figure

symbol
2 8 0.132939 =6 (fitted) 0.08810 (a)
2 4 =-0.202032 9.827586 -0.09985 (b)
4 2 -0.542489 0.611400 ()
2 2 -0.667034 0.525733 =-0.61956 (d)

Values of the different parameters o , B and a{t = 1) for
the different systems studied and the corresponding symbols ((é)...(c))

in figures 2,3. For b = 2, a is given by equation 15 and a(t = 1)
C(

follows from equation 16 for known B. B = for all cases where

& <0.
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FLCURK CAPTIONS
Figure 1 : The two tyﬁes of two-terminal clusters used in the present
calculation : (a) b=2, q=8, (b) b =2, q =4, (¢) b =4,
q=2, (d) b =2, q =2 (the notations (a),(b),{c), (d)
refer to the corresponding cases in figures 2 and 3 and in

table 1.

Figure 2 : Plot of &n| c— —-B | vs. n T‘I?'c.

[y

with B = 0 for a> 0O (curve (a))
and B = S-%-BL) for o< O (curve (b)(c){(d))

Figure 3 : Upper frame : plot of a(T) vs.t in the case (a)(b = 2, q=8)
when o > 0O showing the incidence of the choice of parameter B
upon the behaviour of a(T). For representation im the lower

frame a value B = 6 was chosen. In the lower frame

-~ T"T
the effective exponent o(T) is shown vs, T £ for the diffe~

rent systems studied (e) with B, o and a(t = 1) as given in

table 1. For the case (c) we have also represented (curve(e'))

a"(T)-Tc'E%Zl- which would be determined with the linearised
T-T
variable t' = substituted to t (see text). The latter
Cc

linearized effective exponent is compelled to reach the mean
field value o = O in the limit of high temperatures.

The exact values of o are indicated by horizontal arrows.
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B=-1.89292
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