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ABSTRACT

Within a real-space renormalisation-group framework, we
treat the g-state Potts ferromagnet in a simple cubic lattice cons
tituted by two different semi-infinite bulks (respectively charac
terized by the coupling constants J1 and J2) separated by a
(1, 0, 0) interface (characterized by Jg). The use of a rather
sophisticated two-terminal cluster enables a quite reliable dis-
cussion of the phase diagram and its universality classes. Four
physically different phases are obtained, namely the paramagnetic
and the double-bulk, single-bulk and surface ferromagnetic ones.
The critical surface contains a multidritical line {associated
with J1 # J2) which in turn contains a special point assoc¢iated

Key-wordg: Potts ferromagnet; Interface; Phase diagram; Critical

exponents.
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I INTRODUCTION

Critical phenomena associated with surface or interface
magnetism have recently raised increasing interest, due both to
its theoretical richness (see Binder 1983 for a recent review) and
to its experimental utility (Pierce and Meier 1976, Alvaradc et
al,1982 ({(a,b) Klebanoff et al. 1984). One of the simplest models that
can be assumed is the g-state Potts ferromagnet in semi-infinite
simple cubic lattice, the free surface and the bulk coupling cons
tants being not necessarily equal. This model has already recei-
ved some attention within real space renormalisation group (RG)
frameworks (Lipowsky 1982 (a,b}, Lam.and'Zhang 1983, Tsallis and
Sarmento 1985). However they addressed mainly the qualitative as
pects of the problem. More recently Costa et al 1985 (hereafter
referred to as paper I) used, for the same problem, a‘quite sophis
ticated cluster (da Silva et al 1984) which enables quantitative-
ly satisfactory results. |

In the present paper we aésume the system to be consti-
tuted by two (not necessarily equal) semi-infinite simple cubic
bulks separated by a (1, 0; 0) interface with a coupling constant
which might be different fromthose of the bulks. This model con~
tains the free surface problem (treated in paper I) as well as
the planar defect problem (a planar .anomaly in a otherwise homo-
geneous system) as particular cases. All of the present calcula-
tions recover those of paper I if one of the semi-infinite bulks
is assumed to be the vacuum.

The paper is organized as follows: in section II we
introduce the model and the RG formalism, in section III we pre-
sent the results (g-evolution of the phase diagram and critical ex

ponents), and finally we conclude in section IV.
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IT MODEL AND FORMALISM

We consider a g-state Potts model whose Hamiltonian is

given by

="q E J' 6-‘“ (q =l 2...'q v‘) (1)
%'? o5 ij o83 i r “a ¢ 9y Vi

where <i,j> runs over all pairs of first-neighbouring sites of
two semi-infinite simple cubic bulks 'separated by a (1, 0, 0) in-
terface (square lattice). Ji; equals J; on one semi-infinite
bulk, J2 on the otherwone, and Jdg on the interface {J1, 32,

Jg 2 0). Let us introduce the following convenient variables (he

reafter referred to as thermal transmissivities: see Tsallis and

Levy 1981):

L1 - e~9r/kgT |
£, 81 =¢ e[0, 1] (r =1, 2, S) (2)

l%(q—l)e'qu/kBT

where .T is the temperature and kp the Boltzmann constant.

The following definition will also be useful:

in l+(g-1l)tg
- Jg 1-tg
pa=s37--1-= -1 (3)
1 gn 1+ (g=1)t)
l-t4

where we have used definitions (2).

To establish the RG recursive relations, we renormali
ze the two-terminal cell (first introduced by da Silva et al 1984
to treat the anisotropic simple cubic lattice) indicated in Fig.1l
into a single bond (with renormalized +transmissivity) by preser-
ving the partition function. The recurrence for the first bulk

is obtained by associating t3 to each bond of the cell of Fig. ],
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and is given by

t] = £(t1) (4)

where the function £(t}) {(toco lengthy to be reproduced herein)
has been calcilated by using the Break-collapse method (BCM; Tsallis

and Levy 198l). Analogously we obtain, for the second bulk,

t) = £(t2) (5)

For the interface transmissivity recurrence, we associate +tj, t3
and tg on the cluster (which lies now on the interface) precise

ly as indicated in Fig. 1, and obtain (once more through the BCM)

th = gltl, tz, tg) (6)

where the function g is a ratio of two polynomials in (ti, t2,
tg), each of them containing about two thousand terms for arbi-
tré}y g. Also we verify that g(t, t, t} = f(t),k{tu

The set of Egs. (4) - (6) formally closes the RG pro-
cedure, and determines both the phase diagram and the various
correlation length and crossover critical exponents (respectively
denoted by v and ¢). The particular case t2 = 0 (or equiva-
lently tj = 0) precisely recovers the RG constructed in paper

I.
III RESULTS

Before we enter into the descripticn of the results ob-
tained within the present RG, let us make a few general conside
rations. The intuitive expectation for the present system is
that various phase transitions could occur. Two of them - corres-

pond to the single bulk para-ferromagnetic standard phase transi-
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3D (1) _ 3D (2)_
- 32,

tions, respectively occurring at Tg n3D(q)J1/kB and T
HBD(q)lekB&,where n3D(q)-is a pure number (e.g., n3D ¢2)= 4.511

(Zinn—Justin-IQTS)} corresponds to the Ising model). For A abo-
ve a critical value Ag (which depends on q and J2/J1), the in-
teiface is expected to retain a ferromagnetic order even when both
bulks have lost theirs,.more precisely for temperatures up to a
critical value Tg which depends on q, Jg/J; and J2/J1, and

which satisgfies mg 2z TéD = nZD(q) Jg/kg, where n?D(q) is a pure

number (e.g., nzbté) = 2.269...). Tg approaches TgD if and only

if Jg is much larger than both J1 'and J3. A mean field argu

ment for the Ising model (4Jg + J1 + J2 = 6J1, conventionally assu

ming Jp s J1) yields &g = (1 - J2/J1)/4. This implies Ac = 1/4

(A¢ = 0) for the free surface (planar defect) problem which corres

ponds to J2 = 0 (Jy = J1). The RG results we are now presen-

ting are different and a priori more reliable.

The q = 2 RG flow diagram is presented in Fig. 2. It
gqualitatively illustrates the general phase diagram obtained for
arbitrary g. We verify the following features:

(i) Five different phases are present, respectively characterized
by the trivial (fully stable) fixed points {t;, t2, tg)=(0,0,0}
(paramagnetic phase; P), (1, 0, 1) (bulk-l ferromagnetic pha-
se; BFj:; bulk-1l and interface are ordered, whereas bulk-2 is
disordered), (0, 1, 1) {(bulk-2 ferromagnetic phase; BF3; bulk
-2 and interface are ordered, whereas bulk-l is disordered),
(1, 1, 1) (bulk-1-2 ferromagnetic phase; BFj12:; all three re-
gions are ordered), and (0, 0, 1) {(surface ferromagnet; SF;
the interface is ordered, whereas both bulks are disordered):

(ii) Eleven semi-stable fixed points are present (see Fig. 2 and
Table 1), namely at (t1, t2, tg) = (tB{q),0,1)and 0, tB(q)1)

{characterising the single-bulk para~ferromagnetic phase tran
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gition with three~dimensional correlatijon length critical ex-

ponent v°0), at (tB(g), tB(q), 1) (characterising the double

=bulk phase transition whose critical exponent also is v3D),

at (0, 0, ts(q)) (characterising the interface para-ferromag-

netic phase transition with critical exponent vZD), at

(tB(q), 0, t5B(q)) and (0, tglq), t5B(q)) (characterising the

surface-single-bulk multicritical lines with critical exponent
v>> for ‘the bulks and lﬁyiB (Burkhardt and Eisenriegler 1977) for the surs-
face), at (t2(q), 0, t54q)) and (0, tB(p), t51(@)) (characterising the si
multaneous sinale-bulk and interface para-ferromagnetic phase tran

gsition, with critical exponent v3P  for the bulk and ]/yiB
1

SEB

for the interface), and finally at (tB(q); tBiq), t5FB(q)) (cha

racterising the simultaneous equal-bulk and interface phase

transition, with critical exponent _v3D for the bulks and

l/yiEB for the interface).
1
(iii) A fully unstable fixed point is present at (ti, t2, ts)=(tBt;L
tB(q), tB(q)) (characterising a high<-ordér.multicritical point
3D '

with critical exponent v for the bulks and l/yiEB for the
. |
interface). 1Its existance is obvious from the fact. that

gf{t, £, t) = £(£). Its (un)stability deserves however a few
comments. Very recently dos Santos et al 1985 treated, within
a Migdal-Kadanoff-like RG ({(whose essential difference with
the present treatment comes from the choice of the cluster},
the criticality of a gquantum anisotropic Heisenberg interface
between Ising bulks. That problem shares with the present one
a common particular case, namely the g = 2 ferromagnet.
Consequently, for this particular model, the two approximations
can be compared. Both present, on the t3] = t; axis, two non
trivial fixed points, a fully unstable one and, at a lower tg

value, a semi-stable one. However, in the dos Santos et al
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1985 treatment, the lower fixed point (i.e. the semi-stable cne)
lies on the axis t)=to=tg, whereas, in the present treatment, it
is the higher one (i.e., the fully unstable one) which lies on
this axis, as already said. Furthermore, the dos Santos et al
1985 RG yields tB(2) = 0.34 (which is too high with respect
to the very accurate series result 0.21811 (Zinn-Justin 1979)),
whereas the present RG yields tB(2) = 0.19 (which is too low
with regpect to the series result). All these features put
together make the following picture possible. The fact that
g(t, £, t) = £(t) (true for both RG's under analysis) implies,
as said béfore, the existence of a non trivial fixed point on
the tj=t2=tg axis. The nature of the RG approximations leads
to the existance of another non trivial fixed point on the axis

t1=t2, whose tg coordinate might be higher or lower than that

of the fixed point just mentionned. RG <¢lusters which overes-
timate tB(2) might belong to one class, and those which underes
timate tB(2) might belong to the other class. If so, an ggggg
RG should correspond to the collision of these two fixed points,
and a set of approximations running from one type to the other
should correspond to the crossing of these two fixed points and

simultaneous stability interchange (as occurs often; see Tou-

locuse and Pfeuty 1975). All this analysis could be clarified by
studying the influence of increasingly large clusters; unfortu-
nately this is, computationally speaking, not trivial at all.
In Figs. 3 and 4 we present the g-evolution of the phase
diagram. The location of the multicritical point (characterized by
the value Ag) is presented in Fig. 5 as a function of gq and JoU.
Let us now focuse the values of the various correlation
length critical exponents. Egs.{4)-(6) enable the calculation of

the Jacobian matrix M = 8(ty, tH, tg)/a(t1, ty, tg) evaluated at
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S J.

any relevant fixed point. Its general form is given by

a{q) 0 0
M = 0 b(qg) 0
d (g) e {qg) c(q)

where al(g),..., e(g) depend on the particular fixed point.

gen values are given by

Ap = alq)
A2 = blg)
X3 = c(qg)

whose respective eigenvectors are giveft by

a = ¢
ﬁl o« 0
d
i}

-152“ b =—c¢
e
0
33 o 0
1l

{7)

The ei-

{8.a)

(8.b)

{8.c)

{%.a)

(9.b)

{9.c)

We guickly review now the various types of fixed points

appearing in our problem. For the fixed point at (t3, tz, tg) =

(tB(q), 6, 1) we have b=c=d=e=0, a>1, and the three-dimensiocnal crit

ical exponent is given by
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u3D(q) = tn¥en alq) (10)

where 3 is the RG linear scale factor. For the fixed point at
(1, tB(qLr 1) we have a=g=d=e-= 0, and b > 1; b
equals the value of a appearing in Eq.{(10). For the fixed point
(tB(q),r tB(q), 1) we have c=d=e=0, and a=b > 1; a
and b equal the value of a appearing in Eq.(10). For the fixed
point (0, 0, t5(q)) we have a=b=0, d=e  and ‘c > 1; the

two-dimensicnal critical exponent is given by

vZD(q) = 2n 3/¢n clq) (11)

For the fixed point (B(@r, 0, 5B (@) we have Db =0, d and
e < 1, and a,c > 1; a equals the value appearing in Eq. (10},
and the corresponding crossover and critical exponent ‘are respec-

tively given by

+5B(q) = n c(q)/¢n alq) (12) "
SB
and l/ytl(q) = gn 3/&n c(q) {13}

For the fixed point (tP(q), tP(q), tB(q)) we have d = e, c+d+e
=a.=b>1 and ¢ > 1; a and b equal the value appearing in
Eq.{10), and the corresponding crossover and critical  .exponents

are respectively given by

¢SEB(q) = tn c{g)/en al(q) : (14)

SEB

and 1/'ytl (g} = sn 3/2n clq) {15)

For the fixed point (tB(q), 0, t51(q)) we have b=0, ¢, 4,

e <1 and a > 1l; a equals the value appearing in Eq. (10). Fi-
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nally, for the fixed point (tB(q), tB(q), tSEB(q)) we have ©c,
d and e <1, a=>b>1; a and b equal the value appearing
in Eq. (10). The various exponents that have been determined are
presented in Table I and Fig. 6.

All the results we are discussing strictly hold for stan
dard second order (or at least continuous) phase transitions, i.e.
for 0 s g £ 4 for two dimensions, and 0 5 q £ q¢ (with g, = 3)
for three dimensions. Nevertheless, whenever the transition is a
first order one, the latent heat is quite small in the interwval (g
e[0, 4]; it is due to this fact that we present our results (see

Table I and Fig.6) up to g = 4.

IV CONCLUSIONS

Within a real space renormalisation group approach, we
have treated the criticality of the g-state Potts ferromagnetic mo
del in a inhomogeneous lattice constituted by twe semi-infinite
simple cubic bulks (characterized by the coupling constants J; and
3 reéspectively) separated by a (1, 0, 0) square lattice interface
(characterized by the coupling constant Jg). The approach exteﬁds
that deviced by Costa et al 1985 and uses .a rather sophisticated
cluster introduced by da Silva et al 1984 for the homogenecus system

(Jy=J =JS). The phase diagram presents, for all values of g four

2
PhYSicalii_ different phases, namely the paramagnetic, the ferro-
magnetic single-bulk, the ferromagnetic double-bulk, and the crde
red surface ones. The paramagnetic, single-bulk and surface pha-
ses join on a multicritical line whose universality class for
J1 # J, is that corresponding to the free surface case (J,/J1=0).

All four phases join on a special point (corresponding to Jy = J2)

whose nature is not sufficiently clarified within the present (re
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latively small) cluster approach. The exact critical temperature
is recovered for the two-dimensional limit (J3, Jp << Jg).

The location of the multickitical line can be characte-
rized by the value 4 = Jg/J; - 1 above which surface magnetic or
der can exist even if it has disappeared from both bulks (see Fig.
4). We present, for the first time as far as we know, the evolu
tion of A with g and J,/J3;. For the Ising model (g=2) we ob-
tain, for the freeISurface case (J2/J1 = 0), 4 = 0.76 (to be com-
pared with the series result 0.6 ¢+ 0.1 by Binder and Holenberg
1974, the Monte Carlo result 0.5 + 0.03 by Binder and Landau 1984,
and with the mean field value 0.25); for the equal bulk case (Jq=
J3) we obtain A = 0.10, to be‘compared with the mean field value
0. |

With respect to the critical exponents, we obtained that
all wv's monotonouslyldecrease with increasing q, whereas the
crossover exponents ¢'s present the opposite tendency.

We acknowledge valuable discussions with E.M.F. Curado

and A.M. Mariz.
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CAPTION FOR FIGURES AND TABLE

Fig. 1 -

Eig- 2 -

Fig - 3 -

Figc 4 -

Fig. 5 -

Fig- 6 -

Table 1 -

RG cell for the (1,0,0) interface in double semi-infinite sim-
ple cubic lattice. The full (dotted) .bonds represent
the bulk-1 (bulk+2) coupling t1(t2). The dashed line re
presents the interface coupling.gs. The arrows indicate
the terminal nodes of the cell.

g=2 RG flux diagram in the (tl'tQ'tS) space. @ denotes
trivial (fully stable) fixed points:; e denotes the mul-
ticritical and the critical (semi-stable) fixed . points

{SB,,SB,, 8,etc.) ; o denotes the high-order malticritical (B, ,) (ful
ly unstable) fixed point. The five possible phases are
indicated:: the two single-bulk ferromagnetic (BFl,BFz),
the double-bulk ferromagnetic (BFlz), the surface ferro
magnetic (SF) and the paramagnetic (P) ones.

g-evolution of the phase diagram indicated in Fig.2 (a)

2 71°
Same q—evo&ution appearing in Fig. 3, but in the A=-T
space (&553§-1). {a) for JZ/J1=0; {b) for J2/J1=.5;(c)
1
for J2/J1=1. '

for t2=0: (b} for t.=t

g-evolution of 4, for several ratios J2/J1; the J2/J1=0
case reproduces the results obtained in paper I.

g-dependence of the thermal-type critical exponents (v's
and y's) and the crossover exponents (&'s).

Present RG (upper value) and exact or series or Mnte Car
lo or similar (lower value) results for the main critical points
and exponents. (a) de Magalhaes et al. 1981; (b) Gaunt
and Ruskin 1978; {(¢) Zinn-Justin 1979; (d) Jensen and
Mouritsen 1979; (e) calculated from value appearing in Zinne
~Justin 1979 and Binder and Hohenberg 1974; (f) calcu
lated from value appearing in Zinn-Justin 1979 and Binder
and Landau 1984; (g) Wu 1982 and references therein; (h)
den Nijs 1979; (i) Heerman and Stauffer 1281;
(i} Le Guillou and Zinn-Justin 1980; (e) Diehl and
Dietrich 1980; (m) Binder and Landau 1984; (n) Costa et
al. 1985; (o} Binder and Hohenberg 1974,
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FIG.1
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TABLE 1
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