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Abstract:

Particles moving along the magnetic field lines emit
under favorable conditions Cherenkov radiation in a cold, rare
fied plasma. A peculiar phenomenon occurs for curved magnetic
fields: in for example a toroidal magnetic field the radiation
spirals inward and approaches a resonance. Both the generation
and the study of the propagation of these Cherenkov modes ap-

pear to be within reach of present technology.



It is well know that electrons radiate in vacuum on-
ly if they are accelerated (and the generation of these waves
is "instantaneous"), whereas in a dielectric medium they alread
y emit radiation, if e€(w) » 1, for constant rectilinear motion
(Cherenkov radiation). This, however, is a cumulative effect
which requires aw/c>>1 if a is the distance traversed in the

medium and w the frequency emitted.

Cherenkov radiation can also be generated by elec-
trons moving through a cold, magnetized plasma where, however,
only the case of a homogeneous magnetic field and rectilinear
motion has been investigated so far im literature [1] . Here
we report some results for circular motionm in a toroidal field
(plus numerical results for a dipole field) which may be of
astrophysical relevance (pulsar magnetosphere), but we hope that
the main conclusions of this letter can be tested in the labora-

tory with present technology.

We describe the properties of matter by a phenomeno-
logical dielectric tensor €. A standard manipulation of Maxwell's
equations gives for the induced magnetic field 8B due to a
small external current 6} (see e.g.[(])

<~ =1 > _ 2 > > ~] -+
rot € rot SBw = (w/c) GBw + (4m/ec) rot € djw (1)

where the subscript w indicates Fourier transformation with re

spect to time.

Our final aim is to solve equation (1) for circular
motion of charges in an anisotropic medium. We proceed by first
solving the problem for rectilinear motion in the given medium

and then generalizing the results to circular motion.

We consider here a cold, one-component magnetized
plasma. Its dielectric properties are conveniently described @]
by the two parameters Y: = Q/w, = eB/mc and X: = (wp/w)2 .

2 2 . . .
WS- = 47e“n/m. We shall confine our discussion to the case



¥Y>>X>1 and neglect terms of order X/Y. The dielectric tensor

<>
€ then takes the form

£ =g, §
1 Ya

ab t (en - €y) YaYb (2)

b

_ 32.1/2
Here Y _ = Ba/(B )

is the unit vector along the magnetic
field. The dielectric coefficients are connected with the quan
tity X by €, = 1-X, €, = 1. We note that €, is negative ac-
cording to the above inequality X > 1 and that we are in a

sense dealing with a uniaxialmedium with one negative index.

For rectilinear motion one can obtain an exact solu
tion to (1). For the sake of simplicity we choose a coordinate
system in such a way that the background magnetic field coin-
cides with the z—-axis. The dielectric tensor (2) is then diag

onal, and equation (1) takes the form

ent(8%/9x? + 32/8y2) + 811 32/3z22 6§w = ~4m/c ror €71 Sgw

(3)

The solution can be found by a coordinate transform
ation [1] . We obtain the Green's function to (3) from the

vacuum Green's function through the substitution x = Ve, x,

y =Ve.y and z = Ve, z

G(t,r) = VE, en/T exp(iwf/c) (4)

where

r = Eu(x-X‘)z + €n(y-y')2 + EL(Z-Z')l/Z

After some calculations (see eq. III.18 ref [L]) we

get for rectilinear motion of an electron along the magnetic
field



Gﬁw = ief/e, €y £(s) (?xg) exp(iwrg(8)/c) / (2ﬂcr2g2(9)) (5)

with

g(8) = (g, cos2 8 + g, sin2 6)1/2

s = g, cos 8/g(8) - c/v

2(sin(saw/c)) /s , aw/c finite
f(s) = :
278 (s) , aw/c > ®

As in the case of an isotropic medium, Cherenkov ra-
diation is emitted for s=~0 and aw/c>>1. However, the radia-
tion pattern is much more complicated, as can be seen by making

a comparison with the isotropic case.
The radiated power per unit frequency 1is

i, = e’w/e((e8H) ™ -1y = fus/(ePvH) (6)
As a consequence, the radiation becomes smaller with

a higher Lorentz factor Yy of the electrons.

We now treat the radiation from circular motion along
a toroidal magnetic field. It is not possible to find a Green's
function to (1) since for a toroidal magnetic field the dielec
tric tensor Dbecomes space dependent in a cartesian frame.
Therefore we have to rely on approximate methods. In the sense
of a WKB approximation our solution for rectilinear motion should
still hold locally. One learns from an analysis of circular mo
tion in an isotropic medium that the formulas for the radiated
power are even the same for rectilinmear and circular motion,
so that we are quite sure that our local solutions (5), (6)
are good approximations. However, to draw conclusions about the

fields far from the charge we have to study the propagation of

the wave fields given by (5) through the medium. For this we

use the approach described in Ref. [31 and construct the ray



path given by dx/dT = VKD, §k/dt = - V;D where D is the dis-
persion relation which can be expressed as
D = euk% + elkz

differentiation along the ray path with respect to the affine

e"el(w/c)z , and d/dt means the <covariant

parameter T. The dispersion relation is a first integral to

the ray equations. In cyclindrical coordinates we obtain

r = 2€rkr kr = k¢¢
rp = 2egky ky =~k b - 2(e ~e )k K, /r (7)
z = 2e k_ kz =0

These equations can be easily integrated. To simplify

matters we put kZ(O) 0. With the help of the dispersion re-
lation the ¢~component of the wave vector can be eliminated from
(7). Taking the coordinate ¢ as a new affine parameter of the
ray trajectories, the differential equation for kr can immedia-
tely be solved. We find that for large valures of ¢ = (bo the wave

vector grows exponentially as

ko= k_exp [(me,/end /T (4-0_7] (8)

T ro

The ray trajectory is obtained by a further integr-
ation. Asymptotically we get

ro®or exp[:—(~€L/€")1/2

(¢-¢ )] (9)
The waves therefore propagate inwards as stated a-
bove and approach a resonance condition. What happens at this
resonance can again be studied by means of a homogeneous,
. . . > . . . .
anisotropic medium. Let B point in the z~-direction and

€y = €(z), €; = 1. We then obtain for B = By = b(z) exp (ikx)

b+ [k /e(z) - K2Jb = o (10)



so that in WKB approximation

z

b = const. f(z)_1/4 exp [*i J f(z')lj2 dz "], (11)
z
o

£(z) = kg - «2/e(z)

At the resonance (e(z) = ¢) we find total reflection
with zero amplitude in WKB approximation. A fuller treatment

still gives total reflection but inside the region e€(z)>o0.

An experimental verificationm of our conclusion could
be done in the laboratory with a rarefied plasma satisfying the
condition Y>>X>1, which implies,normalized to a magnetic field
of 100 KG: w = 10'! Bs[é—lj, wp = 1011 35[5‘1] and a plasma
pressure of p = 10“3 B% Torr in a vessel of 1linear dimension
L>>2.Bg1 cm. The contribution of the ions is negligible.

We conclude with the remark that Cherenkov radiation
could also be of importance for the pulsar magnetosphere. In
the canonical picture charges move along a magnetic dipole field
through a plasma, which in certain regions satisfies the
Cherenkov conditions. The ray equations for the Cherenkov waves
can no longer be integrated analytically for a dipole field. A
computer calculation, however, shows the same features as for
circular motion. In addition, we remark that the Cherenkov radi
ation would also be coherent if the normal coherence condition
is satisfied, so that curvature - and Cherenkov-radiation can

be of comparable importance in certain regions of the canonical

pulsar magnetosphere.
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