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ABSTRAGT
A possible dsacription of unsteble particles, classically defined

as those with a rest-mass depanding on proper time, is examined. ir
one assumes the oguality bestween inertiel and gravitational messas
valid for both steble and unstable particles, s universal interaction
between s sero-mass sealar field and ell particles, which would tiwms
have a varisble rest-mass, is allowed b}y this equelity and has been
proposed by Dieke in connection with Mach's principle.
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1. (LAS3TEAL EQ A
A typical example of sn unstable system described by classical
theory is the Lorentz model of the hydrogen atom. As this system

emits radiation continuously, its energy decays in time.

Let us now consider an unstable elementary particle, for
instance, a neutron. Its decay into a proton with the emission of
leptons 1s usually pilctured as a transition of a nucleon from a
neutron to a lower rest-mass proton state. Quantum mechanically,
as is wall nown, this transition is a result of the Ferml coupl=~
ing between the nucleon and lepton fields, which allows the dif-
ference in rest-energy between the neutron and proten to be
transformed away as an electron-antineutrine pair. Classicallyy
this pisture may be translated in the statement that the nucleon

rest-enersy decreases in time and is radiated away-.

One ia thus led to examine the classjical definition of an
unstabls particle as one, the rest-mass of which, Ho? is not a

cougtan® but depends on the particle‘s proper time s:
Ry = K (8) (1)

The aguation of motion of a free stable particle:

du % 0
me —— =
® as
vhers 2% = g¥(g) is its world~line and
az™
u = ;;~ ’ ae” = dzu'dza,== (dz°)2 - (dzk)2 (2)

will be replaced, for an unstable free particle, by the phenomeno~

Jogical equations
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d
— (g, cu™) = D (3)
ds

where D% = the disintegration damping force -~ 1s the four-force

that accounts for the partlicle's decay.

The equation (3) and the normalisation:

fo'A —_
u®u =1 (4)
lead to:
du
u —— = 0 (5)
ds
hence: dp
o o
u DT = ¢ m=—, (6)
[+'4
ds

In the case of the neutron beta-decay, if one were to ascribe
this transformation to such a force DOL, the rate of work of this
force would have to be equal to a radiated energy of about

2

c ;

= (my~ my) MeV/sec., where my and m, are the neutron and the
hydrogen atom rest-masses and T is the neutron lifetime.

If the unstable particle is electrically charged its equation

of motion will be
d €
— (p, cu*) = = F*F + % (7)
ds C £l
where FP 1is the electromagnetic field. As a result of the anti
symmetry of F¥F, the relation (6) still holds in the case where D™

is defined by equation (7).
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2. UNSTABLE PARLICLE IN A GRAVITATIONAL AND ELECTROMAGNETIC FIELD

Let us now consider an unstable particle in a gravitational
field. The equation (3) can be written:
alp, cu™) = D%ds
It is natural to generalise this equation into the following
one:
Alp, eu™) =D%ds (8)
where the symbol A stands for the operator of covariant or

absolute differentiation, and:

2

ds™ = A

14
By dx” dx

gAv(x) is the gravitational tensor. The equation (8) reads:

Hy cAu” + eu™ Ap = D™ as
As e is a scalar function of s, Apo is identical to dpo. We thus
have, if one takes into account the well known expression for A~

dutx dPo

ol (=%}
oo\ gt Gy el oo )
s s
where:
D
o L1 qef “Bea %, &y
_[;; = - g + =
vz Y £

ox ax* 2x
are the Christoffel symbols.
The equation:

a aw’ 1 28y

— i —

g u uh uV11p= 0 {10)

Avoods 2 4P

which is a consequence of the normalisation:
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ng u” u =1

leads, when combined with the equation (9), to the relation (6),

where now:

ub.

u(x:go{Fﬂ

The equation (6) may be replaced into the eguation of motion-
(9) to give:

du(x 1 v - ((SOL o, )DY, ( )
C Lar4-gvu u = n~u uq . 9a

In the presence of an electromagnetic and a gravitational

Ho

field, the equation of motion of a particle with variable rest-

mass 1s, therefore:

Cmm— - —— —_ - D
o ” + [;v ™ u - F, u (60 u* u, 11
where: - dyo s
g u D =¢=— -
AV ds

According to our assumption, the self~force D" characterises clas

sically an unstable particle and vanishes for a stable one.

The equations of the electromaghnetic and the tensor gravita-
tional fields are known. To have a meaning, the eguation (9)
must be supplemented by equations which determine the force D«

or Po as a function of s.

If this force is assumed to derive from a scalar field 4(x):

¢
D™ = ——— (13)
D Zy

the equation (12) for D™ obtains the form:
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d
g;(,;oca.@zo (14)

This means that the scalar field ¢, at the particle'!s world=-
line, would determine the mass of the particle. Let m, be a

constant mass; we have, from (14):

1
p(s) =m  + - ¢ (Z(s)) (15)
[44

Ihe variable mass of an unstable particle is equivalent to_a
particle with a constant mass in interaction with a sclar field.

3. DICKE'S EJUATION OF MOTION

It is of interest to consider now the long range scalar field

x in order to over-~

‘¥ whose existence has been assumed by Dicke
come, at least in part, the absolute space~time character of
Einstein's relativistic theory of gravitation. The

properties of this field are:

a) the source of the field is a scalar mesure of the mass
density of the universe; T3 a simplified equation satisfied by
the field may be of the form:

0=« 47f T (16)

where f 1s a coupling constant;

b) the scalar field gives rise to an attractive force

between all bodiess;

c) the scalar field coupling is weak, of the order of the
gravitational coupling;

d) the interaction of Dicke's field with a particle cannot
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ocecur unless the mass of the particle is a function of this fleld.

Dicke's equation of motion for a particle of rest-mass Ho is,

i3 our notations:

(4 ) h 25 Aa” o+ o 20, 0
— en, ) - = d - utu c — — =
ds o = 2 © 3Zd' dp aZ’X.

This equation is equivalent to eguation (9), if one sets:

Indeed, we can write (9) in the following form:
dun 2% 1° . 28y

}JOCQQW——'*‘}—Locuq u +zp~°cgd ——
ds 02 2%

og 28 dix

4 ¥ 0
+ - q uYI uv + o g'yq uq-——-— = D
227 pzA ds

ol

or:

1 ’ag;w

a g™
W (pn_ cug) = = |
& s flo “f 2H°cg 2z7

222

ALV

u’ + g gy, o

ufu

u

+ g cg™f? %80 uP ut = p*

hence:

%83 AV

=Dpy

d
— (4 cup) = —p_ ¢
as | © Vi >0

The difference between ours and Dicke's equation 1lies in the
significance of the force D% Whereas we tried to introduce such

a force to distinguish, in the real m of classical physics, an
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unstable from a table particley Dicke introduce it as an ade

ditional gravitational force; satisfying the item b) above.

4. TIHE EOTVOS FXPERIMENT AND DICKE®S UNIVERSAL INTERACTION

In Dicke's theory, therefore, eguation (9) is valid for all
particles. The equality between the inertial and the gravita-
tional masses, assumed to hold for all particles, imposes a

condition on the wvariability of the mass Fo and on the force D%

If the equation (9a) is assumed to be valid for all particles:

du® 1
;m + 1.;\:(. ar v’ = ; : (8;‘-' ™ uq) Dv, (9a)
s o ©

the second-hand side of this equation will be independent of the
particle if we postulate; as already pointed out by Dicke, thats

a) the variable mass Mo be equal to a constant Ao = presumahly
characteristic of the particle = multiplied by a universal func-

tion of s, the same for all particles, V(s):
Po(s) =ﬂ° V(s); (17)

b) the scalar field ¢, as defined by equation (13), be equal
to the same constant ;{69 which depends on the particle, multiplied

by a universal function ¢
P(x) = Ay P(x) (18)

If one identifies the constant A ° with the constant mass m,
given in (15), one sees that the universal function V(s) is given

in terms of ¢ bys
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V=l+"’A =m (19)

The relations (13), (15), (17) and (18) transform this equa-

tion into:

’,

du < : 1] v av |
—— - [Douh = —J — - — . (20)
ds % V| 22y ds |

The equality betveen the inertial and the gravitational masses
requires, thereiore, that the scalar field generate a universal
interaction among all particles. ile emphasize that Dicke's field
being produczed; by hypothesis, by the matter in universc, it is
supposed to act on all particles, including the stable ones like
the electron - the scaliar field would be esseatially a partcﬁ‘the
gravitational field, the other part being the tensor field. This
is best seen when one exanmines the problem of a particle moving
in a weak,; static gravitational field.

We can write equation (20) in another form, of the geocdesic

type, if we transform the metric by means of the relation:

- _ .2 -ty =  _ o}
gIHy" 7 gpv 9 g’ Buy = 5, (21)

and define the new variables:

2 2.2 =« 9% 4 a -
ds--- = ds 5 1 - =V 1 (ZZ)
ds
The equation {70) goes over into ths following one:
awy =, _,
' o Sl Z
o — ofn F u_,\ u = O (23)
ds: AY

In the 1linit of a wealty static gravitational field, one writes:

= ’7(0) . E "|'

24

Suv EDF, 14
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where - is a small parameter and gﬁg) is the Lorentz metric
tensor:
(o) _ (o) _ (o) _ (o) (o)

Soo T TELL T "Bz Tz’ = ligut =0, pAV.

Eﬂ” becomes, according to (21) and (19):

EPV = (O) Ex}

g}w +}?;1v’ 7/4\):
if the function Y is also treated as a small perturbation:

y<<o

In the first approximation in &, ¢ and the particle's velocity,
one therefore obtains for the equation (23):

dazq

o0
ate

where, in this approximation:
2"7{?_0 31700

-

ra’. ;}-g(o)t)\
(o]s] » zo azA

— 2y
The consistency condition [;0 = 0 requires that Eroo + ~—  Dbe

c
time-independent. If this dependence also holds for the other

o]

components of fqﬂ s one obtains Newton's equation of motion for

a particle moving in a static potential U = %?-6760 +Ccp.

The scalar field ¢ is thus seen to be amalgamated with the
Zero=zero component of ‘fpv to give the observable potential U-
in fact, according to the definition (21), the scalar field V
hides itself in the new metric tensor g,y » Its existence would

presumably be revealed in observables depending on Poe
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5. SPECIFIC DECAY INTERACTTIONS
We may, still, wish to distinguish, in the real m of clas-

sical physics, unstable particles like neutrons, from stable

ones, like electrons. If one maintains the definition of an
unstable particle as one with a decreasing rest-mass, we may be
led to distinguish two components in the force D% which occurs

on the right-hand-side of equation (11):

(=73

L _
D = Do + Dl
Dgéis the force derived from Dicke's universal scalar field,
acting on all particles; Dg'is the decay force, acting on

unstable particles but vanishing for stable particles. Equation

(9) now is: aun™ . [q&: <y . dp, Sy g oo
BoC§ — a upy+tu ¢ = 4
© ds AY ds o 1
and the relation (6) has the form:
oL (23 d“o
ud(Do + Dl) = ¢ —;i-; s (25)

We see; however, that the occurence of the force Di seems
artificial. For in the same way that charged particles have a
universal interaction with the electromagnetic field, one would
prefer to state that the mass variation of all particles would
result from an universal interaction with the scalar field such
as defined in the preceding paragraph. But this interaction, if
it exists, does not correspond to any instability of particles -
since it occurs for all them = but rather to a scalar gravita-

tional interaction, in addition to the tensor field interactlonj
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and the mass variation wounld perhaps correspond to a cosmological

variation of the gravitational constant. In fact, one has:
ﬁ-}lf‘/hc T 10740

where o is the proton mass. If Hp is given by the equation (17)

where o is the proton rest-mass mp one obtains:

ﬁ' ml‘?; /he ¥ 10740
where ;’= :}VZ(S) varies with time.

* %k X



