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ABSTRACT

We present a study on the non-minimal coupling of a
vector field and gravity in the context of a Weyl integrable
_spacetime (WIST). The dynamics for this system is shown to allow a
cosmic solution in which this vector field, responsible for the
evolution of the metric properties of thé Universe, can undergo
unrestricted fluctuations. In a sense, the physical causes of the
evolution of the cosmos seem to be uncontrollable themselves — a

feature that can be thought of as representing a mariconette Universe.

Key-words: Non-minimal coupling; Weyl-integrable spacetimes; Arbitrary

causes of cosmic curvature.
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I. Introduction

[}

Since its first appearance , in 1917, up to present
times, the cosmological constant A introduced by Einstein in order
to organize the gravitational field at large scales, when cosmic
dimensions are involved, has provoked a series of speculations
concerning its physical origin — still mysterious today. From the
practical point of view, the modifications its introduction
determines, in the context of the equations of gravitation, are seen
to be rather wide, ranging from altering the iﬁevitability of
gravitational colapse (like in the De Sitter case), to the elimination
of primordial cosmic irregularities, as for instance in.the work of
Starobinskylzl. Recently, particle physicists made effort pro the
rehabilitation of A, after a long period in the 70's when it had

been almost forgotten — or better, put apart of the principal lines

of cosmological investigations.

Its origin has been considered intriguing for some sixty
years. However, since the application of Quantum Field Theory |
methods to cosmological questions it became apparént that, contrary
to one's first belief, it is not the presence of A that should
cause troublesome, but rather the opposite: its absence. In
effect, though some cosmologists have proposed arguments according
to which one obtains A < 10'55cm_2, the physics of elementary
particles offers so many processes capable of inducing the
occurrence of a non-null {(and even very great) constant A that we
are lead to consider the opposite question: why should A be

almost exactly zero ?

Just as A emerged as an inscrutable object aggreagated to
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Einstein's equations of gravitation, along recent years several
alterations of these equations were idealized, according to

diverse conceptions anchored at cosmelogical reasonings. Among
these, a proposal that in a certain period enjoyed great
respectability was that of the introduction of a scalar field ﬁ in
order to provide for a covariant formulation of a (somewhat
"Pythagoric") idea aimed at explaining the existence of some numbersy
constructed w}th_adimensional ratios of well-known quantities that
appear in distinct areas of physics, which are extremely large

{(Dirac's Large Number Hypothesis[3]).

39

Thus, for instance,
e2/Gmemp v 10 — which measures the ratico of electric and
gravitational strenghts among protons and electrons; alsco, the

lifetime of the Universe (in the standard model) when measured in

microscopic time units (ez/mec3 v 10_23sec) yields the same number,
1039; and the number of particles existing inside our horizon is
80

thought to be the order of 10 — which is approximately the
square of the previous number. For conciliating these numerical
coincidences with a evolutionary (i. e., non-stationary) Universe
scenario, it was suggested that possibly some of the so-called
"fundamental constants" were not truly constant, but would rather
vary with cosmic time.

The most abrangent accomplishment 6f‘this trend was
achieved by the "gauge-covariant" theory of gravitation of Canuto
and collaborators[4], in which a conformal function was introduced
to correlate cosmic and atomic units, in the spirit of the above-
-mentioned LNH of Dirac, in order to establish a conformally scale-
-covariant set of Einstein-type equations, to be valid in general

units and thus displaying, besides usual c¢oordinate cowvariance,

also a scale or "gauge" covariance. However, due to the presence
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of the conformal function as a fundamental feature of the theory,
the structure of spacetime did not result to be Riemannian, but
rather conformally-Riemannian or, as is more commonly aknowledged,
a Weyl-integrable spacetime (WIST) structure.

What seems to have striked a deadly blow on this theory
was the observation that the world we live in is not conformally
invariant ! In other words, if perchance we exist in a Weyl-
-integrable space domain, we could for better calibrate our physics
in such a way as to express it in a Riemannian fashion — unless this
should appear to be impossible, in virtue of dynamical hinders. For
instance, what would happen if the system of equations describing, on
a cosmic scale,. what we call gravitational processes were to develop
a WIST structure ? Fromlthe outset we would inherit,‘besides a
metric structure tensor guv(x) (to be used for measuring lenghts),
also a scalar function ¢({x) (to be used for measuring variations of
lenghts). Could we always disregard.this function, for example
carrying it away through some unit transformation procedure, as
in the standard theory ? ‘This possibility is, of course,
intimately dependent on the nature of the dynamics obeyed by
those processes, that is, on the way this field ¢ becomes
dynamically activated.

We shall see in the present work that the theory we propose
here for describing gravitational processes in a WIST leads to a
dynamical separation of a cosmic "scalar™ field, which passes to
hover beyond any determination. Although we do not claim that
this is a general property of gravitational systems, it means that
it is possible to find and exhibit, as we do later on, a special
configuration in which the metric structure of spacetime has as
source of curvature a scalar function of unaccesible origin, as if

for every point of spacetime were ascribed a distinct local cosmplogical
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constant, each of equally indeterminate provenance. The reader
might ask himself, at this point, if such solution is not just a
consequence of a bad dynamics,'and so should be neglected. We
show in the following that the internal coherence of our set of
dynamical equations does not allow one to get rid so swiftly of
this conundrum.

Before emprehending such task, however, we shall begin
by discussing some fundamental theoretical issues and defining the

basic objects of the theory.

1. Non-minimal Coupling with Gravitation

Let us suppose that we are interested in the description
of physical processes inveolving a vector field a' in curved space.
In his article "Die Grundlagen der Allgeméinen Relativitdts Theorie"
(Annalen der Physik, 1916), Einstein describes in a simple and
direct way the coupling between a vector field and gravitation. His
procedure — which rests at the basis of all subsequent
generalizations of theories firstly written in Minkowskian spacetime
and then extended for curved spacetimes — consists simply in a
straightforward wuse of tensor theory in order to obtain equations
that are valid in any system of coordinates, whatever the state
of motion of the observers concerned with this interaction. 1In
this procedure, it is assumed that functions of spacetime curvature

do not enter in the picture of the interaction. Such approach is
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sometimes identified as constituting an expression of the strong
principle of equivalence of gravitation. Though this minimal
coupling indeed possessed speclal atractives (among which the
issue c¢f introducing less arbitrariness, that is, of introducing a
small number of arbitrary conditions), not always have the physicists
made indiscriminate use of it. To gquote only one remarkable example,
in recent times, we have just to recall the important rdle that

conformal coupling (which is non-minimal) of a scalar field with

gravitation has performed in some modern investigations. Beyond
that simplist formal choice, some authors have produced a new,
particularly attracting, reasoning for the adoption of non-minimal
couplings of physical fields with gravitati;n. This subject leads us

to the question_of'the cosmic singularity, of gravitational collapse

in general.

I11I. 'The Cosmic Singularity

At the end of a long debate concerning the inevitability
or not of the existence of a true singularity in the gravitational
field, it seems that the great majority of physicists were led

to accept the arguments suggested by some authorsls]

, according
to which it is not possible, for any gravitational field having
well-behaved matter as source, to exhibit an absolute regqularity.

Somewhere, sometime, some singular region shall be encountered,

such that possible paths of actual observers may desappear.of our
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spatiotemporal representation of the world. This conclusion became
consubstantiated in a series of mathematical theorems endeavouring
the irrevocable elimination of the world's regularity, foreseeing
in some domain of spacetime a singular region. Unfortunately, one
may say, the sucess of these theorems was so great that alternative-
critical approcaches were inhibited. In fact, almost all of the
theorems then demonstrated rely upon some hypotheSgs that are
not so that easy to support, if we were to mantain the highly
.critical standards that are commonplace in scientific literature
today. Among these basic hypotheses, two are particularly fragile
and of acceptance, at least, doubtful: (i) the existence of a global
Cauchy surface, and {(ii} the condition (Ruv - % Rguv)‘vuvv 6-0 ’
for arbitrary timelike observers with velocity v, |

It is a hard matter to conceive any actual observation or
evidence for the first one. However, it allows one to grip firmly
to the old classical determinism, and so, it seems, only those who
put at risk their respectability, or else some scientists in their
vague metaphysical moments dare to restrain their adhesion.
The second condition, on the other hand, is far more objective and
at the same time more dramatic. Its validity, in the context of
Einstein's theory of gravitation, is linked to the condition of
positivity of energy. 1In effé&t, Tuvvuvv » 0 implies, through
Einstein's equations, (Ruv - % Rguv) vMv¥e 0 L

Precisely here enters the stage the new characteristic,
allowed for by non-minimal coupling, that we have mentioned above:
it can produce a splitting between those two conditions ~ energy

positivity and the relation (Ru'—-%Rgpv) Vuvv ¢ 0 - hence disabling

v
the application of the theorems and conveying the question on the
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existence or not of a singularity to a frontal examination of each
solution. Thus, for example, owing to this circunvention Novéllo

[6]

_ and Salim produced a model of an Eternal Universe (further explored
in Reéf.7), in which a spatially homogenedus and isotropic
(Friedman-like) universe without singularity is presented. It could
be conjectured, therefore, that a good systematic procedure for
inhibiting the appearance of disagreable singular regions would be

to promote a non-minimal coupling of gravitation with some physical

field. We shall return to these generic questions elsewhere.

IV, A Vector Field coupled non-minimally to Gravity

This rather long introductory discussion was made necessary
in order to lead a moré critical reader to regard with some sympathy
the issue of non-minimal c¢oupling — which is at the basis of the
present work. In effect, we consider the dyhamics of processes

involving a vector field a¥ ana gravitation as given by the Lagrangian

(1)

] Tgp_1gw M,
o =g ile-1ee sematibo 1

where f = A
U [

v ] and £ is an adimensional number of the order

W, ¥

of unity; since we shall not deal with matter in this article, we

take EQ

mat 0.
The first step is to obtain the dynamics, via a variational
principle, from this Lagrangian. Before this, howévér, we must

specify the way we shall treat the fundamental wvariables to be
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varied. It has been common, since Palatini[sl

, to vary
independently, as geometric variables, both the metric tensor
guv and the connection ng . In Einstein's theory (for the
vacuum) , with EC% = /:EiR, one obtains the beautiful result
that the variation srzv of the connection gives rise naturally
to a Riemannian structure for spacetime. This result is quite
general and can be obtained also when one couples gravity to
matter, provided the coupling be minimal ! This small feature
seems to have passed unnoticed to a majority of authors.
Recently, Novello and Heintzmann[gl have demonstrated that
performing a Palaﬁini variation when matter is described by a
vector field coupled non-minimally to gravity conduces in a
straightfoward way to the result that spacetime structure is
not Riemannian, but rather a WIST structure, as is the case
also in this work.

(10]

Indeed, a Weyl space  in which by definition holds

gU\’_FA = g].!'\)' ¢)\ P (2}

is called a WIST when the vector ¢A is irrotational, that is,

when

for some scalar field ¢. Now, using Palatini's variational

principle the following equations are implied for the case of

our Lagrangian eqg{1):
i) From 8T%" .
———V

Tuvie = Juv %0 ? )
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where
w_ =9 [-1n (+ + BA AM)] (5)
o o k AT ’
and where symbol; denotes covariant differentiation generated by
WIST connection Pﬁv,'which is given, according to-Weyl space

theory, by
' S o a o a o
Tuv = {1“’} - Sy veydy m g (6)

uv
Relativity.

{ @ } being the: usual Christoffel symbols of General

1i} From GAu s

f““ll = -gra} (7
A

where the double bar represents covariant differentiation in the

Riemannian sense, that is, making use only of Christoffel

symbols { 3v}~ .

L L]

iii) From Ggu?

1 - o -
{ K + BAaA ) va = _Euv _BRAUAU (8)
where
- O o1 ap

Three important remarks: firstly, spacetime is WIST-
~type naturally, due to non-minimal coupling, and this result is

not altered by the introduction of (minimally coupled) matter.
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Secondly, eq(7) for the vector field is non-linear due to the
fight-hand side, in which a complicate functional of Au is
contained in the scalar of curvature R. Finally, we observe the
renormalizatidn of.constant k, depending on the factor AuAu, and
implying a possible weakening of the usual positivity (i.e.,
atractiveness) of gravitational interaction, and so the viability
of a gravitational behaviour. far more complex than and quite

distinct from that of the conventional theory of General Relativity.

Vv, The Marionette Universe

In order to exhibit the property of generalization of A
mentioned at the Iﬁtroduction, we proceed to elaborate a sbecial
solution for the set egs(5, 7, 8) of dynamical equations. We
begin by asking for an homogeneous and isotropic spacetime metric
structure. By the well-known Robertson-Walker arguﬁents, we can

write the line element in the form

as? = at? - 2wy ra + 020 ae? + sine asd)] . (10)

From the expression eqg(6) for the WIST connection Pﬁv in terms

of Christoffel symbols { 3v} and vector w we can write for the

contracted curvature tensor Ruv the expression

K

g9 _3 L i@ 11 e
Ruv'lﬁw_'zwuflv*f“vilu'ﬁ’ oSy = 2% * 7 9 Gy -
- | (11)
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and accordingly, for the trace R,

o). .
R = % + 3wuwu - 3Wu||u o (12)

)

where symbol(° refers to Riemann spacetime- (RST) structure.

Adopting the ansatz
R=10 (13a)
0
Au = (p(t), 8, 0, 0) = w(t)ﬁg {13b)

it follows that eq(7) for the field Au is automatically satisfied,
since field fuv is null. Einstein's equations eq(8). turn out

to be just
G =0. (14)
Using expressions egs(11), (12) into this equation, we have

(o) -1 o w
&uv IR (w T T) 9 (15)

It is worth at this point to observe that the reader well

[11] would

acquainted with scalar-tensor theories of gravitation
have noticed the similarity of the above equation to those
occurring in these theories. Consider, for example, the most

popular of them, the Brans-Dicke theory, whose equations are

[« m - 1 | A

¢ -1 :
t 3 (¢|“11| v = gw ¢ , (16a)
=0 (16b)
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The resemblance among egs(15) and (16a) is transparent.

However, a relation such eg(16b), that restricts B-D field ¢ and
thus allows one to generate independent but interlinked

dynamics for the scalar and the tensor fields, does not happen in
our theory. This feature is related to the elected ansatz, since
as eq(7) is identically satisfied, a suplementary equation for
our "scal&r" field A2 results eliminated.

Here rests also the reason for an interesting
phenomenon: the physical cause of an expanding Universe is
misteriously projected into an arbitrary fqnction that determines
the degree of Weylization of spacetime. 1In effect, eq(15) reduces

to the expressions for the components (0-0} and (1-1):

-

2:;‘_ ,g;ag (17a)
L
- b L - N &
S.2&2- Fo . Ta-ta® 38, (17b)
S o

where a(t) - £n (%'4 sz(t)).

a system that, as should be expected for coherence, reduces
further to just one condition correlating the functional

dependence of S{t) and a(t):

*

e
[}
g

=z, (18).
in which we have set, for compatibility of the other spatial
components with (1-1),

t?
e & (19)
O’ 4

for € = constant = .(0,%1), and the prime denotes differentiation



CBPF-~NF-019/86
-13-
with respect to coordinate X.

It is then possible to integrate eq(18)}, yielding

1 L&l 1/2
st) = —m——r +X=| = + BA A") dt + const.|. (20)
T u1/2[ 2Jk W ]
{ ct &ﬁﬁ.)

Let us examine in some detail this relation. Before aught else,
we point out to the reader that eq(20) ié the final and
complete solution of our set of dynamical equations. Its
indeterminacy, comprised in the arbitrariness of AuAu, enables
one to generate particularly attracting metric structures, given
the characteristic of spacetime departure from the Riemannian
regime {(when Au z const.).

A very interesting situation occurs when we demand

the De Sitter condition % = H = const. This happens when

af{t) = 2Ht ¢ e . (21)
A question that immediately arises is: where does this field -y
come from ? For the present solution this question should have
an answer analogous to that concerning the singular origin of

the Friedman model: it is an initial datum of the theory. Just

like A4 would have a misterious global origin, ocur function ¢
would equally represent a sort of variable cosmic influence on
gravitatioqal‘ phenomena.

From a wider point of view, we see that in this
scheme the form of the evolution of the cosmic function §(t)
becomes dependent of an entirely uncontrollable function y(t),
whose presence charactherizes the Weyl structure of spacetime. It

is a remarkable property of the dynamics genei‘ate&bg- Lagrangian eg(1)
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the fact that such arbitrariness in the cosmical context is
allowed. Since we can prescribe at will function-w(t}

(which can.be understocd as the real cause of cosmic curvature),
we are quite naturally induced to name this solution a

Marionette Universe.
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