CBPF-NF-015/81

INSTANTON, MERON AND A NON-SELF

DUAL SOLUTIONS OF U(n,p) MODEL

bу

Prem P. Srivastava

Centro Brasileiro de Pesquisas Físicas/CNPq Av. Wenceslau Braz, 71 Fundos - R.J. 22290 - Rio de Janeiro - Brasil

ABSTRACT:

Instanton and meron type solutions are obtained for the generalized ${\sf CP}^{n-1}$ model - ${\sf U}(n,p)$ model - in two dimensions. The equation of motion is cast in a convenient symmetrical form.

I. INTRODUCTION

The O(3) σ model⁽¹⁾ and CP^{n-1} models⁽²⁾ in two dimensional Euclidean space-time have been of much interest recently because, like non-abelian gauge theory in four dimensions, they contain instantons and non-trivial topological structures - Gene ralizations of these models have been considered recently. One starts with a manifold of the kind

$$G(n,p) = \frac{G(n)}{G(p) \times G(n-p)}$$
(1)

with G(p) = O(p), U(p), Sp(p) etc., called Grassmann manifolds, with G(n) as the global invariance group, G(p) is the gauge group and G(n-p) is the invariance sub-group of the field. For G=U the model was discussed in Ref.3, for G=O in Ref.4, for G=Sp in Ref. 5 and HP^{n-1} model in Ref.6.

We discuss, for definiteness sake, the classical solutions for the case of U(n,p) model. Instanton, meron and a non-self dual solution are obtained.

II. U(n,p) MODEL:

The action for U(n,p) model may be written in terms of complex scalar fields Z_a^{α} , $(a=1...n;\alpha=1...p)$ taking values in the Grassmann manifold U(n,p). The fields are subject to constraints

$$Z^{+}Z = I_{p}$$
 (2)

where $Z = (Z_a^{\alpha})$ is a $(n \times p)$ matrix and I_p is $(p \times p)$ identity

matrix. The fields transform as

where V ϵ U(n), the global invariance group and U(x) ϵ U(p), the gauge group. The Lagrangean density is

$$L = Tr \left[\left(D_{\mu} Z \right)^{+} \left(D_{\mu} Z \right) \right]$$

$$= Tr \left[\left(\partial_{\mu} Z^{+} \right) \left(\partial_{\mu} Z \right) + \left(Z^{+} \partial_{\mu} Z \right)^{2} \right] \tag{4}$$

where we introduce a matrix gauge potential (A $_{\mu})_{\alpha\beta}$ defined by

$$D_{\mu}Z \equiv (\partial_{\mu}Z + iZA_{\mu}) \tag{5}$$

then

$$A_{\mu} = A_{\mu}^{+} = iZ^{+}\partial_{\mu}Z \tag{6}$$

L is invariant under local gauge transformations

$$Z \rightarrow ZU$$
 , $A_{\mu} \rightarrow U^{\dagger}A_{\mu}U + iU^{\dagger}\partial_{\mu}U$ (7)

and under global transformations

$$Z \rightarrow VZ$$
 , $A_{\mu} \rightarrow A_{\mu}$ (8)

For p \neq 1 we have non-abelian gauge group. Under gauge transform ations the gauge covariant derivatives transform as D $_{\mu}Z$ \rightarrow (D $_{\mu}Z$)U

and $D_{u}D_{v}Z = \partial_{u}(D_{v}Z) + i(D_{v}Z)A_{u} \rightarrow (D_{u}D_{v}Z)U$.

Introducing Lagrange multiplies fields to take case of the constraints we derive the equations of motion to be

$$D_{u}D_{u}Z + Z(D_{u}Z)^{+}(D_{u}Z) = 0$$
 (9)

The conserved Noether current corresponding to the global invariance group is found to be $j_{\mu} = [M, \partial_{\mu}M]$ where $M = ZZ^{+}$ is gauge invariant with TrM = p. An infinite set of non - local conserved currents (in two dimensions) may then be constructed (7).

The O(n) non-linear σ model has the drawback that there is only a non-trivial topological structure for n=3, the instantons and anti-instantons, fulfilling the self-duality equations. In contrast CP^{n-1} model (2)(3) and its generalization U(n,p) contain always a non-trivial topological structure. The topological charge \emptyset of a solution may be defined as

$$\widetilde{Q} = \frac{1}{2\pi} \int Q(x) d^2x \qquad (10)$$

where the topological charge density is:

$$Q(x) = i \epsilon_{\mu\nu} \left[Tr \left(D_{\mu} Z \right)^{+} \left(D_{\nu} Z \right) \right]$$

$$= \partial_{\mu} \left[\epsilon_{\mu\nu} Tr A_{\nu} \right] \qquad (11)$$

The self duality equations in U(n,p) model are †

$$D_{\overline{+}}Z = 0 \tag{12}$$

 $^{^{\}dagger} x_{\pm} = (x_{1}^{\pm} i x_{2})$, $\partial_{\pm} = \frac{1}{2} [\partial_{1}^{-} i \partial_{2}^{-}]$, $D_{\pm} = \frac{1}{2} [I - ZZ^{+}] \partial_{+} Z$

and give rise to finite action instanton and anti-instanton solutions. We will also find below non-self dual meron solutions as well as another non-self dual solution in parallel to those found for ${\sf CP}^{n-1}$ in Ref.8. The relevance of non-self dual solution for quantized theory has been emphasized in recent publications.

We show easily

$$L = 2 \text{ Tr} \left[|D_{Z}|^{2} + |D_{+}Z|^{2} \right]$$

$$Q(x) = 2 \text{ Tr} \left[|D_{Z}|^{2} - |D_{+}Z|^{2} \right]$$
(13)

and the equations of motion take the form

$$D_{+}D_{-}Z + Z |D_{-}Z|^{2} = 0$$

or

$$D_{-}D_{+}Z + Z |D_{+}Z|^{2} = 0 (14)$$

if we use the identity

$$(D_{-}D_{+} - D_{+}D_{-}) Z + Z \left[|D_{+}Z|^{2} - |D_{-}Z|^{2} \right] = 0$$
 (15)

The energy momentun tensor is

$$\tau_{11} = -\tau_{22} = 2Tr \left[(D_{+}Z)^{+} (D_{-}Z) + (D_{-}Z)^{+} (D_{+}Z) \right]$$

$$\tau_{12} = \tau_{21} = 2iTr \left[(D_{-}Z)^{+} (D_{+}Z) - (D_{+}Z)^{+} (D_{-}Z) \right]$$
(16)

and energy momentum conservation leads to

$$\partial_{+} \operatorname{Tr} \left[(D_{+}Z)^{+} (D_{-}Z) \right] = 0$$

$$\partial_{-} \operatorname{Tr} \left[(D_{-}Z)^{+} (D_{+}Z) \right] = 0 \tag{17}$$

To obtain non-self dual solutions it is convenient to work with uncontrained field $\widehat{\mathsf{Z}}$ defined by

$$Z = \hat{Z} \frac{1}{|\hat{Z}|} \tag{18}$$

where $|\widehat{Z}|^2 = \widehat{Z}^+ \widehat{Z}$ is a (pxp) matrix. We write $P = \widehat{Z} = \frac{1}{|\widehat{Z}|^2} \widehat{Z}^+$ which satisfies $P^2 = P = P^+$ and $(I_n - P)\widehat{Z} = 0$. The equations of motion give

$$(I_{n}-P) \left[\partial_{+}\partial_{-}\widehat{Z} - (\partial_{+}\widehat{Z}) \frac{1}{|\widehat{Z}|^{2}} \widehat{Z}^{+}(\partial_{-}\widehat{Z}) - (\partial_{-}\widehat{Z}) \frac{1}{|\widehat{Z}|^{2}} \widehat{Z}^{+}\partial_{+}\widehat{Z}\right] = 0$$
(19)

and \mathbf{A}_{μ} takes the form

$$A_{\mu} = i \frac{1}{|\hat{Z}|} \left[\hat{Z}^{+} (\partial_{\mu} \hat{Z}) - |\hat{Z}| \partial_{\mu} |\hat{Z}| \right] \frac{1}{|\hat{Z}|}$$
 (20)

while

$$D_{\pm}Z = (I-P)(\partial_{\pm}\widehat{Z}) \frac{1}{|\overline{Z}|}$$
 (21)

We remark that it is possible to make use of the gauge invariance of the theory to parametrize (3) the coset space

in terms of p(n-p) complex fields K and write

$$\widehat{Z} = \left(\frac{K}{I_p}\right) \tag{22}$$

Making use of the fact that (ZZ^+) transforms linearly under U(n) and in gauge invariant we may readily derive the non-linear transformation properties of K which transform linearly under $U(p)\times U(n-p)$ subgroup. The Lagrangian takes the form

$$L = \frac{1}{2} \operatorname{Tr} \left[L^{2} (\partial_{\mu} K^{+}) H^{2} (\partial_{\mu} K) \right]$$
 (23)

where $L^2(I_p + K^+K) = I_p$, $H^2 = (I_{(n-p)} - KL^2K^+)$ and we may define covariant derivative of K in the sense of non - linear realizations (9) as

$$\mathbb{D}^{\mu}K = H(\partial_{\mu}K) \tag{24}$$

This parametrization, however, is not convenient for obtaining non-self dual solutions.

III. INSTANTONS, MERONS and a CLASS of NON-SELF DUAL SOLUTIONS

Instanton solutions for CP^{n-1} model (p=1) have been widely discussed in literature.

In the case of U(n,p) a 1-instanton solution may be written as $Z_a^{\alpha} = (x_+ - b_a^{\alpha})$.

 $\text{We find } A_{\mu} \xrightarrow{|x| \to \infty} i U^{+} \partial_{\mu} U \qquad \text{where} \qquad U = e^{2\theta \, I} p \quad , \\ \theta = \text{arg } (x_{1} + i x_{2}) \text{ and } \tilde{Q} = p \, .$

A meron solution for CP^{n-1} model is written as

$$Z = \frac{1}{\sqrt{2}} \left| f(x) u + v \right|$$
 (25)

where $|f|^2 = 1$ and u,v are constant vector satisfying $u^+u=v^+v=1$, $u^+v=0$. We find

$$\partial_{-}\partial_{+}f + \frac{1}{2} \left[|\partial_{+}f|^{2} + |\partial_{-}f|^{2} \right] f = 0$$
 (26)

It is clear that only non-self dual solutions are obtained in this form. Choosing, for example,

$$f = \sqrt{\frac{(x_{+} - \alpha)(x_{-} - \beta^{*})}{(x_{-} - \alpha^{*})(x_{+} - \beta)}}$$
 (27)

we find

$$L = \frac{1}{4} \left| \frac{1}{(x_{+} - \alpha)} - \frac{1}{(x_{+} - \beta)} \right|^{2}$$
 (28)

$$Q = -\frac{1}{2} \, \overline{\nabla} \cdot \left[\frac{(\overline{x} - \overline{\alpha})}{(\overline{x} - \overline{\alpha})^2} - \frac{(\overline{x} - \overline{\beta})}{(\overline{x} - \overline{\beta})^2} \right]$$

$$= - \, \mathbb{I} \left[\delta^2(\overline{x} - \overline{\alpha}) - \delta^2(\overline{x} - \overline{\beta}) \right]$$
(29)

where $\bar{x}=(x_1,x_2)$ $\bar{\nabla}=(\partial_1,\partial_2)$. For n-meron configuration we may take

$$f = \prod_{i=1}^{n} \sqrt{\frac{(x_{+} - \alpha_{i})}{(x_{-} - \alpha_{i} *)}}$$
(30)

For the U(n,p) model we will illustrate the procedure for n=3, p=2. Write the 3 x 2 matrix Z as Z = (Z_1, Z_2) where

 $Z_{1,2}$ are 3-component column vectors. The constraints are then given as Z_1^{\dagger} $Z_1 = Z_2^{\dagger}$ $Z_2 = 1$, Z_1^{\dagger} $Z_2 = 0$, and $P = Z_1$ Z_1^{\dagger} + Z_2 Z_2^{\dagger} ; $(I - P)\partial_{\pm}Z_1 = (I - P)(\partial_{\pm}\widehat{Z}_1)|\widehat{Z}_1|^{-1}$

The equations of motion are easily written in terms of $Z_{1,2}$. Writing $\widehat{Z}_{1} = (f u + \lambda v)$, $Z_{2} = g w$ where u,v,w constitute an orthonormal set of constant vectors we find

$$\partial_{-}\partial_{+}f^{-}\frac{1}{(\lambda^{2}+|f|^{2})}\left[(\partial_{+}f)f^{*}(\partial_{-}f)+(\partial_{-}f)f^{*}(\partial_{+}f)\right]=0$$
(31)

For the self-dual solution corresponding to D_Z = 0 we obtain $\partial_- f = 0$. Choosing $f = (x_+ - \alpha)^m$, for example, a finite action is obtained for m \geq 1 and we get $S = 2\pi \widetilde{Q} = -2\pi m$. A meron solution is obtained for $|f|^2 = \lambda^2$ so that the Eq. (31) reduces to Eq. (26). The action is infinite and topological density is concentrated at isolated points.

Finally we remark that a non-self-dual solution may be obtained starting from a nxp matrix satisfying, say, $\partial_F = 0$ and $F^+ F \neq const.$ We verify that

$$\tilde{Z} = (I - F \frac{1}{|F|^2} F^+) \partial_+ F$$
 (32)

satisfies Eq. 19 and $D_Z = -F|F|^{-2}|\widehat{Z}|$, $D_+Z = (I - ZZ^{\dagger})(\partial_+^2 F)|\widehat{Z}|^{-1}$ and $|\widehat{Z}|^2 = \partial_-\partial_+|F|^2 - (\partial_-)|F|^2)|F|^{-2}(\partial_+|F|^2)$.

REFERENCES

- 1. A. Belavin and A.M. Polyakov, JETP Letters 245 ('75)
- 2. H. Eichenherr, Nucl. Phys. B146, 215 ('78);
 - E. Cremmer and J. Scherk, Phys. Lett. 74B, 341 ('78)
 - V. Golo and A.M. Parelonov, Phys. Lett. 79B, 112 ('78)
 - A.D'Adda, M. Lüscher and P.Di Vecchia, Nucl. Phys. <u>B146</u>, 63('78)
 - E. Wilten , Nucl. Phys. B149, 285 (179).
- 3. A.J. Macfarlane, Phys. Lett. B82, 239 ('79).
- 4. M. Dubois Violette and Y. Georgelin, Phys. Lett. <u>B82</u>, 251('79).
- 5. See for example F.J. Wegner, Relations between non-linear σ models of various symmetries, preprint.
- 6. E. Gava, R. Jenge and C. Omero, Phys. Lett. B81, 187 ('79).
- 7. M. Lüscher and K. Pohlmeyer, Nucl. Phys. <u>B137</u> 46('78); E. Brézin, C. Izykson, I. Zinn-Justin and J.B. Zuber, Phys. Lett. <u>B82</u>, 442 ('79).
- A.M. Din and W.J. Zakrzewski, Nucl. Phys. <u>B174</u>, 397('80);
 Phys. Lett. 95B, 419 (188); Lett. Nuovo Cin 28, 121('80).
- A. Salam and J. Strathdee, Phys. Rev. <u>184</u>, 1750 ('69);
 S. Coleman, J. Wess and B. Zumino, Phys. Rev. 177, 2239 ('69).