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BSTRACT:
Instanton and meron type solutions are obtained for the
generalized P! mode1 - U(n,p) model - in two dimensions. The

equation of motion is cast in a convenient symmetrical form.



I. INTRODUCTION

The 0(3) o mode1 1) and ¢P" 1 mode1s(?) in two dimen
sional Euclidean space-time have been of much interest recently
because, 1ike non-abelian gauge theory in four dimensions, they
contain instantons and non-trivial topological structures - Gene
ralizations of these models have been considered recent]y. One

starts with a manifold of the kind

6(n,p) = —a(n) (1)
G(p) x G(n-p)

with G(p) = 0(p), U(p), Sp(p) eétc., called Grassmann manifolds,
with G(n) as the global invariance group, G(p) is the gauge group
and G(n-p) is the invariance sub -group of the field. For G=U the
model was discussed in Ref.3, for G=0 in Ref.4, for G=Sp in Ref.
5 and HP""! model in Ref.6.

We discuss,‘for definiteness sake, the classical so-

lutions for the case of U(n,p) model. Instanton, meron and a

non-self dual solution are obtained.

The action for U(n,p) model may be written 1in terms
of complex scalar fields Za”,(a = 1...n30 = 1...p) taking values
in the Grassmann manifold U(n,p). The fields are subject to con

straints

277 = 1 (2)

where 7 = (z_%)

a is a (n x p) matrix and Ip is (p x p) identity



matrix. The fields transform as
7 ————> VZU (3)

where V ¢ U(n), the global invariance group and U(x) e U(p), the
gauge group. The Lagrangean density is

P +
L= Tr [(D,2)7(D2)

Tr :(auz+) (3,7) + (z+au2)2] (4)
where we introduce a matrix gauge potential (Au)aB defined by

D,Z (3,7 + iZA ) (5)
then
A, = AT = 1z+auz (6)
L is invariant under local gauge transformations

Z-20 , A - u+Auu + 1u+auu (7)
and under global transformations

Z>VZ , A ~A (8)

For p # 1 we have non-abelian gauge group. Under gauge transform

ations the gauge covariant derivatives transform as DuZ > (DUZ)U



and Dusz = au(DvZ) + 1(DVZ)Au - (DuDVZ)U.
Introducing Lagrange multiplies fields to take case of

the constraints we derive the equations of motion to be
+
DDZ+ Z(D Z D Z) =0 9
W02+ 2(D,7) (D 2) (9)

The conserved Noether current corresponding to the global invari-
ance group is found to be ju = M, BUM] where M = 2Z7 s gauge
invariant with TrM = p. An infinite set of non - local conserved
currents (in two dimensions) may then be constructed(7).

The 0(n) non-linear o model has the drawback that there
is only a non-trivial topological structure for n = 3, the in-
stantons and anti-instantons, fu]fi]ling the self-duality equations.
In contrast CPn'] mode1(2)(3) and its generalization U(n,p) contain

always a non-trivial topological structure. The topological charge

Q of a solution may be defined as
qe L 2
0= 7 | o a’ (10)

where the topological charge density is:

Q) = 1 e [Tr 0,2 0,]

au l}uv Tr A;] (11)

il

The self duality equations in U{(n,p) model are T

D.Z =0 (12)

_ R 1 Tig 1 or
Foxg = OnEig) 8y =5 ¥ ], Dy =g [T - 22%] 8, 2



and give rise to finite action instanton and anti-instanton solu-
tions. We will also find below non-self dual meron solutions as

well as another non-self dual solution in parallel to those found

“for CPn_] in Ref.8. The relevance of non-self dual solution = for

quantized theory has been emphasized in recent publications."
We show ea;i]y
L=2Tr []D_le + |D+ZI?]
ax) = 2 1 [10.21% - [0,2/?] (13)

and the equations of motion take the form

D,0.Z+Z |D_z]% =0
or

D.0,Z+ 2 [p,2]% =0 (14)
if we use the identity

(DD, - D0 ) Z+1 []n+zlz . |D_2|2] = 0 (15)

The energy momentun tensor is

27Ty [kn+2)+(o_2) ¥ (D_Z)+(D+Z)f

1}

122

i

21Tr[§D_Z)+(D+Z) - (D+Z)+(D-Z)]
(16)



and energy momentum conservation leads to

4]
o

8, Tr _(D+Z)+(D_Z)]

fy
[a)

(17)

> Tr i(o_2)+(o+zﬂ

To obtain non-self dual solutions it is convenient

to work with uncontrained field Z defined by

7 =7 (18)
|zZ]
where 1712 = Z*7 is a (pxp) matrix.
: -3 1 3+ . RSP 2 o pt VT
We write P = Z TiT? Z" which satisfies P"=P=P" and (I P)z= 0

|Z]
(19)
and Au takes the form
S 2 3e ) - 17 7] 2= 20
Yoo l (,“) ut?! M (20)
while
0,7 = (1-P) (2, 2) I—%T (21)

We remark that it is possible to make use of the

gauge invariance of the theory to parametrize(3)'the coset space



in terms of p(n-p) complex fields K and write

e (22)
Ltp

Making use of the fact that (ZZ+) transforms linearly under U( n)

and in gauge invariant we may readily derive the non-linear trans

formation properties of K ~which transform linearly  under

U{p)xU(n-p) subgroup. The Lagrangian takes the form

1 2 + 2
L=5Tr [} (3,K7) H (BUK)] (23)

2.+

where L2(1p k) =1, H2 - (1 )-KLPK*) and we may  define

p (n-p
covariant derivative of K in the sense of non - linear realiza -

tions(g) as
DYK = H(auK) (24)

This parametrization, however, is not convenient for obtaining

non-self dual solutions.

ITI. INSTANTONS, MERONS and a CLASS of NONASELF'DUAL‘SOLUTIONS
n-1

Instanton solutions for CP model (p=1) have been
widely discussed in Titerature.
In the case of U(n,p) a l-instanton solution may be

. o _ _ o
written as Za = (x+ ba ).

. ot
We find Au |x [+ iU 9,U where Us=e"7"p |,

6 = arg (x]+ix2) and § = p.

n-1

A meron solution for CP model is written as



Z = [F(x)u+v]| (25)

1

V2
2 . . + +

where |f|° = 1 and u,v are constant vector satisfying u u=v v=1,

utv=0. We find

1 2 7
2.0, F + 2 | 8, FI° + [a_T] | f=o0 (26)

It is cTear that only non-self dual solutions are obtained in

this form. Choosing, for example,

(x,-a)(x_-8%)

) (x_-a*)(x, -8) (27)
we find
L= J f ! R ‘ 2 -
o (xgma) o (xy-8)
v % e ; : (29)

= - I , ?(x -0) - éz(i-é)'
where x = (xy5%5) V = (3,5 8,). For n-meron configuration we may
take

(x,-a.)

+ i
*)

(30)

(X_'ai

For the U(n,p) model we will illustrate the proce-

dure for n=3, p=2. Write the 3 x 2 matrix Z as 7 = (ZI’ZZ) where



Z] o are 3-component column vectors. The constraints are then
. F T _ + - a0 - + +
given as Z] Z]-Z2 Z2 =1, Z] Z2 .0,' and P Z] Z] + 22 22 ;
_ - 5 5 =1
(1 - P)a, 2y = (1= P) (3, 7y) |Z;]
The equations of motion are easily written in terms of Z] 9
Writing 2] = (fu+ xv), 22 = g w where u,v,w constitute an

orthonormal set of constant vectors we find

3 3 f- ‘ 3 F)F*(d F)+(0 _f)F*(a,f)| =0
SRS tovr S USAC R CRD (3,7)] N

For the self-dual solution corresponding to D Z = 0  we obtain

a_f = 0. Choosing f = (x+ - u)m, for example, a finite action is
obtained for m>1 and we get S = 2w6 = ~2mm. A meron solution is
obtained for If|2 = 22 so that the Eq. (31) reduces to Eg. (26).

The action is infinite and topological density is concentrated at
isolated points.

Finally we remark that a non-self-dual solution may
be obtained starting from a nxp matrix satisfying, say, 8 _F =0
and F% F # const. We verify that

5 1 +
7 = (I - F T—T? F )3+F (32)

F

satisfies Eq. 19 and D_Z = -F[F|72|z| , D,z = (I-1z%)(3°
542 2 2 -2
and 1Z1% = 5 3, |F|% - (a_)IF1%) |FI7% (3,1F]%).
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