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ABSTRACT

A phenomenological quantizatidn scheme is carried out for
the collision process of two identical solitons of the nonlinear
Schr8dinger equation. The effective potential is determined from
the classical expression for the time-delay, and the corresponding
$ matrix is calculated for the quantum scattering of the two
centers of masses of solitons. It is shown that this § n;atriz
reproduces the exact S matrix of the quantum many body problem as
well as the ground state binding emnergy of the system for large
particle number, but it is not adequate to describe the scattering

process for low energy region.
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It is well known that there are some classes of nonli-
near wave equations which-are exactly solub1e1. Although all of
them are one-dimensional, they offer a nice site to study the
theoretical foundation of quantization of nonlinear fields. In

particular, the nonlinear Schr&dinger equation (NSE),
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has been studied by many authors in connection with the non-rela-
tivistic quantum mechanical many body problemz. The quantized
version of Eg. (1) is equivalent to a system of bosons ﬁhose
Hamiltonian is
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where N is the total number of particles in the system and m is
the mass of the particle.
Eq. (1) exhibits a family of soliton solutions3. For

example, the one-soliton solution is given as
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and the two soliton solution
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where n, §, Xg and §0 are arbitrafy constants. It is easy to
see that the two-solitons solution, Eq. (4), splits into two one-
-soliton solutions in the limit of |t| + «, Eg. {4) represents
the scattering process of two identical sclitary waves in their
C.M. system with the relative kinetic energy given by4
4 2
g o160 ne - (5)
mzs2

In this case, the time-delay caused by the interaction between

the two solitary waves is calculated as

2
At = - =B fn(1 + Ox)
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In Eq. (6), for the sake of later convenience, we have introduced
new variables, a and N, instead of £ and n defined by
2
N=if-1-2£ (7)

me
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N is related to the normalization integral of the system as

o

= | ey glf e (9)
so that it is regarded as the number of particles contained in each
solitary wavepacket in the asymptotic region.

In the quantized version, the above two-soliton scatter-
ing is considered as the.collision of two bound states of N-part-
icle systems with the translational kinetic energy E.. The exact
guantum mechanical S-matrix can be explicitly calculated by the
method first introduced by J.B. Mc:Guire5 and later developed by

C.N. Yang a36'7'8

SZN = out< (N+1 ;..-,ZN, (1(21'00_0 I'N) l'(1;2'---;N) (N+1 "”’2N)>in
_ NE1 (ia-i)2 (ia-N)
oL ia+j i1a+N
j=1
_ ia-N I (ia)T (N-ia) )2 (10)
= Ta+N (T (-1alT (N+1ia) '

It has been shown that, for large N values, the gquantum
many body expressions tend to the classical onesg. For example,
the Bethe ansatz for N-particle bound state wavefunction tends to
have the surface of envelope given by the classical one-soliton
solution. In addition, the time-delay calculated from the S-matrix

Eq. (10), gives rise to

At =

(P [y

3
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which coincides with Eq. (6) to the leading order in a and N. Thus
the classical éolution of soliton scattering can be regarded as the
collective motion of two N—pafticlé bound states. Yoon and Negele9
discussed the problem in the framework of the time dependent
Hartree (TDH) approximation.

In a phenomenclogical treatment of collective motion of
a quantum mechanical many body system, it is often introduced an
effective Lagrangean (or Hamiltonian} for the collective variables
in interest. In such a treatment, the effective Hamiltonian is
usually obtained starting from the expectation value of the energy

of the system under the state for which collective variables are

suitably introduced. Schematically,

Heff (Qrp) = <¢Q'p|H| wQ,P>

where IwQ,P> is the statevector of the system parametrized by the
collective canonical variables Q and P.

Once the effective Hamiltonian is defined as a function
of Q and P, one may expect that the quantum mechanics of the

collective motion can be described by the Schrédinger equation,

3 -
th % s0@,t) = Hype d0Q,t) (13)

where ¢{(Q,t) is the wavefunction for the collective variable Q,
and ﬁeff is the Hamiltonian operator obtained by the usual quan-

tization procedure.
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Although very intuitive and frequently used for the study
of collective phenomena, especially in Nuclear Physics, its theore-
tical background is not justified nor clear. The more rigorous
treatment of collective motion should be found in the mean-field
theory like the TDHF or the Green function formulation.

One of the crucial point of such a phenomenological pro-
cedure is that the Hamiltonian is defined as the expectation value
of the energy of the system. This averaging process usually washes
out the quantum mechanical information of the many body character,
so that it is hardly recuperated by the "reqguantization" procedure.
In particular it may happen that the gquantum dynamics described bf
such a requantized Hamiltonian has nothing to do with the real
quantum mechanical property of the original system.

The NSE is the best to study this problem, since the exact
solution is known. We may proceed the phenomenological quantization
procedure on the NSE and compare the result with the exact one.

In order to find the effective Hamiltonian which describes
the collective motion (in our case, the motion of the distance of |
two centers of mass of solitons), we start with the expression of
the time-delay, Eq. (6).

Writing the classical Hamiltonian as

el = F X+ Uggex) (14)

1 -
vl mN is the reduced mass, and X = X =Xy 'Ueff the

where y = % M

effective potential, the time-delay is expressed as

‘/M' 1 1
At = \/ % r {(— - ————) dx {15)
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Expanding Eq. (15) with respect to %;and comparing the result

with the expansion of Eq. (6), we find7

Ueff(x) = = NN ezlcosh {(nx) (16)

According to the phenomenological quantization scheme,

we consider the following Schrddinger equation

hﬂﬁ*
[ ]

th & etx,t) = - 2—2 b(x,8) + U_cc(x)o(x,8)  (17)

We then like to see whether this equation describes the quantum
mechanical aspects of the collective variable X corresponding to
the original many body system, Eq. (2). For this purpose, it is
convenient to calculate the S matrix corresponding to Eg. (17).
Eq. (17) is known as exactly soluble cne, and the symmetrized
S-matrix (= T+R; T? transmission coefficient, R: reflection coef-

ficient) is given by10

g ( ia)r(za=2ia) cosm{i-ia)

eff = T(-21a)T (23+21a) cosmn(i+lia) (18)
where A = % + %- v 1+16N% , with a and N are given by Egs. (7)

and (8).

To compare this result with Eq. (10), we first make use

of the formula11

1
-1/2 , 22 -3

r(2z) = (2m) TZI(Z + ) (19)

and rewrite Eqg. (18) as
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F(1a)T (1a + $)T (A-1a)T (A-ia + 5)cost (A-ia)

S = ,
eff r{-ia)T(-ia + %)P(A+ia)rtl+ia + %)cosn(l+ia)
(20)
Noting that
=N+ 1 il
A =N+ 7t O(N)
and with the help of the formula11
_ G o (a=1) L
we find
2 :
_ =(N-ia) ] I'(ia)T (N-ia) q 1
Seff = —(N+ial P(-ia)P(N+ia)} 11+ 0(gx) + 0E}
(22)
Thus we see that our Seff tends to the exact S-matrix SZN of Eq.

(10) for large a and N. However, this is not yet so satisfactory
since such information from Seff in this domain of large a and N
is exactly the same as that of the classical quantity At, Eq. (6).
To examine the quantum effect reflected in Eq. (18), we
look for bound state poles.of Seff' These bound state poles come

from positive zeros of cosnw(Ai+ia), i.e.,
-iaz = (A - 2 ~ 7) ’ 220 {(23)

The ground state £ = 0 energy is then given by

i 4
_ (3 - 1,2 mNe
Eg.s. = - (A 2 452
4.3
= -2 1sod) (24)

ah
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which should be compared to the exact value

4

Boxact = ~ fﬁf n (25)
It is interesting to observe that for N >> 1, our phenomenological
qguantization scheme.gives an excellent estimate to the exact value
of the binding energy of the original quantum mechanical 2N-body
system. This fact and Eq. (22) seem to support the adequacy of the
phenomenclogical quantization.

However there exists a crucially week point in claiming
that Eq. (17) describes correctly the quantum mechanical property
of the collective motion. That is, our Seff exhibits too many

bound state 9013510

, whereas there is only one for the exact
expression. These extra poles spoil essentially the scattering
amplitude in the energy region where quantum effects are important.

As a conclusion, we summarize our present investlgation
as follows:

1) We calculated the effective potential between two identical so-
litons of NSE starting from the classical expression for time-
~delay.

2) Using this effective potential, we studied the quantum mechanics
of two solitons, according to the phenomenological guantization
scheme.

3) It is shown that for large N and a values (large E or weak cou-
pling) our effective S-matrix reproduces exact S-matriz of the
original 2N system.

4) The ground state binding energy is correctly estimated for large N.

5) Scattering amplitude for low energy does not have correct beha-

vior even for large N,
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To proceed the phenomenclogical quantization scheme,
we took the classical expression for the time delay Eq. (6) as
the guantum expectation value. In order to follow exactly the
spirit of the method, Eg. (11} may be better than Eq. (6) to
calculate Ueff' However, we expect that conclusion here stay unal-

tered.
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