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ABSTRACT

A comprehensive introduction to the theory of supergravity is
given and the super-iHiggs effect illustrated by considering sever
al examples of the Kahler potential occuring in the general coup-

ling to the Yang-Mills system.
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1 INTRODUCTION

Rigorous rigid supersymmetry, e.g., exact supersymmetry of.
the Lagrangian and the vacuum, implies degeneracy among bosonic
and fermionic energy levels. Applying a s.s. generator to any bo
sonic (fermionic) state which is not annihilated by it we create
a fermionic (bosonic) state with the same energy ana momentum, All
the known elementary particles should have consequently superpart-
ners with the same mass. No such mass degeneracy is observed in na-
ture. We list below some of the superpartners required when we at

tempt to build a supersymmetric unified theory of fundamental in

teractions?

Particle Spin Sparticle Spin
Quark q, ,qg 1/2,1/2 Sqark ﬁLrﬁR 0,0
Lepton 1,1, 1/2,1/2 sngxoniL;iR 0,0
Photon y 1 Photino ¥ 1/2
Gluon g | 1 Gluinb_ g 1/2
whes 1 W-ino W*’~ 1/2
z° 1 Z-ino 2° 1/2
Higgs H 0 Shiggs B 1/2

Table 1: Superpartners of some particles required for a .superunified
theory of fundamental interactions,

If supersymmetry is to be relevant for the physical world it must
be broken spontaneously or softly so that some of the superpart-
ners may be made massive to be in agreement with the present ex-
periments?, for example, mi,mi,mﬁ,mﬁ-;o {15-20) GeV,

We also know that when the globﬁl supersymmetry is realized
in the spontanecusly broken mode in which the s.s. generators do.

not annihilate the vacuum there appears in the theory a massless
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spin-1/2 Majorana fermion-'goldstino'-field. It is not possible
to identify, for exémple, the 'goldstino' field with the elec-
tron neutrino because it would satisfy low energy theorems which
contradict the observed properties of the neutrino spectrum. The
problem of the apparent non-existence of the ‘goldstino' parti-
cle may be overcome by lifting the global supersymmetry to a lo-
cal one where the transformation parameters become space-time de
pendent .and a spin-3/2 compensating gauge field wu has to be ad-
ded in the theory. The goldstino field in this cohtext assumes the
role of a gauge degree of freedom and a gauge can be chosen which
eliminates it entirely from the theory while the gauge field v,
itself become massive? - Super-Higg's Effect — analogous to the
well known standard Higg's effect of ordinary gauge theories.
Among several other stroné motivations for studying the lo-
cal supersymmetry we may mention the problem of the observed zsmall-
ness of the Cosmological constant A which implies in our universe

a very small value for the vacuum energy density V = Ag 16120y* =

1/2. In the case of global super

2(3x107*%Gev) * where M7! = (87G,)
symmetry the vacuum energy is the order parameter for broken su-
persymmetry and it is positive definite. The vacuum energy densi
ty gets only positive contributions prOpdrtional to the supersym
metry breaking scale excluding the po_ssibility of cancellations
to obtain small value if other constraints of particle phenomeno
logy are also to be taken care of. On the other hand local super
symmetry {(also called Supergravity theory) brings in necessarily
the gravitation in the thecory and the vacuum energy has the pos-
sibility to become positive, negative or vanishing. This offers

a hope for adjusting at the classical level a very small value

for the cosmological constant which may not be spoiled by quan-



CBPF-NF-012/86

tum corrections because of the residual symmetries in the theory.
We will mention in Sec. 3 sﬁch a model which seems to follow al-
so from the recent investigations on superstring models in higher
space-time dimensions. The supersymmetrf also offers some hope for
resolving certain other unsolved problems in the field of Cosmo-

logy as well.?

2 PURE N=1 SUPERGRAVITY

2.1 Local supersymmetry

When we promote a rigid (global) symmetry with constant pa-
rameters € to a local symmetry by 1etting* €->€ (x)}) the kinetic

terms of the action are no longer invariant and we find
- 4.,
I = Id X 3y 3 € (1)

where j:(x) is an on-shell conserved Noether's current of theglo
bal symmetry. In order to restore the symmetry we are required to
introduce in the theory additional compensating gauge field. We
may cancel the variation (1) by adding, apart from a kinetic

term for the gauge field, a new interaction term (minimal coup-

.[.

For infinitesimal gauge variations 8¢(x) =¢'(x) ~¢(x) we find on the mass-
shell SL 4 BZ[5¢ -a—(%)-] . If the action is invariant under the variations with
constant parameteré(-}, viz, GL-GBIKA'K(::) the conserved Noether current is
given by Gji%s 5¢ B:a'c)Ltd: - Gﬂ't. When this global symmetry becomes local, e.g.,

€+6 (x) we find GLgaz[G(x)jﬁ + Az‘] = Bz(GA'c) %jﬁa‘a@(x) +... See for example,

P.P. Srivastava, Nucl., Phys. B64(1973)499; Rev. Bras. Fis, 3(1973)577.
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ling} tc the action

I*' = -ktJd"x j’; A ’ SA_ =g S (2)
where Kk is a constant and the transformation law of the gauge field
contains the derivative of the symmetry parameter. But a new tem
will arise from GjE which again has to be compensated by adding
more terms to the action and possibly to the earlier transformation
rules under the local symmetry of the flelds involved as well.
Working step by step the sc called Noether procedﬁre {which be-
comes an iterative procedure in k) it may result in a locally sym-
metric action after a finite number of steps.

The procedure may be followed for supersymmetric theories as
well. However, their transformation laws at the global level al-
ready contain the derivatives of the component fields. We assume
that at the local level only the gauge fields transform with terms
that are proportional to BmG while the other fields contaln & (x)
but not 3 €(x), e.g., Gw==-/§[i(omC(x))amA-rF(x)G]. The spinor
parameter carries dimension -1/2 and it follows that if we re-
quire dimension 3/2 for the vector-spinor fermionic gauge field
indicated by vy the parameter k will carry dimension Wﬂ=€hﬁmmbd=

=1 BmG{x)-+... The necessity of the constant x with non-vanishing

K

dimension is a hint that the gravity should enter in a locally su-
persymﬁetric theory. The gauge field of the local supersymmetry
is a {real) Majorana field since Gwm ~3 6 and ¢ 1is a Majorana
spin-1/2 parameter. Since the Noethef supercurrent carries di-
mension 7/2 we obtain the Noether coupling term K(EmJ:). Having

introduced new fermionic degrees of freedom we must also intro-

duce more bosonic degrees of freedom to balance them so as to main
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tain fermi-~bose supersymmetry. This also follows from the fact

, 1
that the supersymmetry current transforms into the strees tensor T ' of

the matter system. The coupling ﬁmJ: thus requires at the same

time a term k h Tl"1 where h =h
1o m

1m 1
sonic (spin 2) compensating gauge field (of linearized gravity).

with dimension 1 is a new bo

The gauge fields of local supersymmetry are thus suggested to be
long to the (2,3/2) supergravity supermultiplet of N=1 supersym—
metry rather than the (3/2,1) supermultiplet. We remark that the
gravity (spin 2) is necessarily coupled to stress tensor of all
matter while neither the real spin 3/2 field nor any other real
matter field can couple minimally to spin 1 photon. The gauge field
wm being a superpartner of spin-2 graviton should describe a spin

3/2 particle which is called Rﬁmvithxﬁ; The simplest locally su-
persymmetric theory contains just these two fields and will be
described below after a brief sketch of the tetrad formulation of
ordinary gravity which is needed since we have fermions in the

theory.

2 TETRAD FORMULATION OF EINSTEIN-CARTAN THEORY OF GRAVITATION®

The space-~time manifold is labelled by coordinates x" where
w=0,1,2,3 indicates the world index. We may introduce at each
space-time point a sufficiently differentiable field of four vec
tors (vierbein or tetrad frame) gm:eia11 where m=0,1,2,3 and
[eﬂ]::O. We assume also the existence of a constant Minskowski me

tric* n and choose the tetrads to be orthonormal, e ,e =n
un -m -Ii mn

* np, = diag(-1,1,1,1),



CBPF-NF-012/86

m m . H n_H Hn_ v n -
= and o= Qs = .
We have the dual frame ¢ e, dx find €6y Gveuem §  ~-which

implies eﬁei_:éz. Weimay define anholonomic components of a ten-

sor field reffered to a tetrad basis, for example, AP = eEAu,
: _ MV Wy _ oW aH Vo _ M :
nnm"enemguv' A Bm-eua.eva A Bu.etc. The general coordinate

transformations xu-+xﬁ or diffeomoffismS“keep the local tetrad
frames fixed while the local Lorentz transformations describe the
rotations of the tetrad frames, independently from each other at
each point x. The tetrad fields eﬂ(x) are supposed to describe

.gravitation. Under a combined infinitesimal transformation we find

m o ® v, m mn n
6eu = 0 (x)ame]_l + (auc )ev-+l 1reu ’
sel = t*(x)3 ek - (3 zMred - A" el (3)

where xﬁ =xu-cu(x) and the Lorentz rotation parameters satisfy
A" =A™, A" = (i/2)x_ (MPH™ where M__ are the Lorentz gener

n n n pq n mn -
ators. In order to define covariant derivative of an object like
eﬁ with mixed types of indices we need two kinds of connections,
connection ruvp to differentiate the worlid indices and connection
mufm to differentiate the local frame or tangent space indices.

We define to set up our notation

o m . m n _. “)'

D ev =3 e’ + T e - uw e (5}

while [I'] = [®¢] =1. The covariant derivatives of other tensors are
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defined analogously. Since the local components A" of a vector A"

are world scalars, GECAP==ca8aAm and the covariant derivative

DUAP==auAF-prmnAn by definition transforms as a good tensor on
all its indicés it follows that the index u in wumn is tensorial
and |
m _ 0 m v m
gcmu n - ° 30“1} nt (auc Yoy n (6)

Under the Lorentz rotations the world index is inert and we find
m n_ m n : m ) o3 m n P _
X nDuA -Bu(}\ nA ) + (GLmu n)A + W AT A (7)
which leads to

w = =D A" =3 A" $AR g P AP,y @ (8)
. n

The presence of the inhomogeneous term shows that B is a con-

nection under Lorentz transformations. A similar discussion bhased
v
]

v o_ v o vV .Q varViory L OX ax’ A
on DIJA ._BuA +I“m A~ requires DUA (x') = Lk - DA™ (x) and
leads to
A_ A X
chr!‘w = Pl.l\) -_-.I'w
= A La X g4a ;00 A Oy p A :
= auavc +;:aarpv +(au; )Puv + (3,2 )ruv_ (9)
while
s7 M =0 (10)
L*uv |
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It is not possible to recast (%) in a form analogous to {8) showing

that the general coordinate transformations are distinct from the

X_l A A
7--(1‘ ~-T.")

Lorentz rotations. We also note that the torsion C v Tou

1!

transforms like a tensor while SL(wum“-ﬁm "™y =0 as expected al-

u

. ) m
s¢ from Dunzm..-(wpzm-rwpmz) and GLnlm.-Q..From the fact thatl%Fv
is a good tensor we may impose the metricity constraint D e$:=0

. p_ o m m
which leads to Puv =e (aueu o e ) and Due =0 while reducing
the number of independent fields. The metric tensor for the world
indices is defined as the composite object g = nmneﬁeg and its in
uo _ gH

verse by.g gav"év « We then find Dkg']_w A(mn)e e . The Eins

tein-Cartan geometry is defined by imposing the metricity postu-
late for Tuv’ viz, Dlgpv==0 which requires the antisymmétry in the
=0.

local indices of the spinor connection, Wimn = ~pm' SO that D

Anm Ao
The space-time connection for this geometry may be shown to take

following form
0 -
where
1 Ja :
rpv v =39 [augva-+3vgua-auguv] {12)

are the symmetric Christoffel connections with respect to which the

metric tensor already satisfies the metricity condition while

A B g B
uv = [guB WV tg up av +gvu ] (13)

A_.x * and which

is the contorsion tensor with the symmetry Kuv 0oV
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vanishes when torsion is zero. For the Riemannian geometry with
vanishing torsion the metricity condition on the tetrad gives the

following spinor connection

8, = 31l -0eh v 3 (3 0, 300 ) epl - (2o m)
(14)

while for the Einstein-Cartan space-time we find
mpmn = &umn + Kumn (15)

where Kumn‘=—Kunm==KuaBeameBn. We also note that
uet\': -9\) 3 = 2Cuvaeg (16)

v TRV Lo~ v
‘non-minimal covariant derivative.

m _ m m._n _ .. m i P dy M n
where é?ue =3 e + W e =16 nau'+§'wugq(n ) n].ev is the

The space-time curvature tensor and the Lorentz curvature
tensor may be conveniently introduced by considering [Dp,DA]acb-
ing on an arbitrary tensor Aﬁ. When acting on the vierbein fields
we find the relation®

- m o m _ O n_ oW n 1
[Dp,Dlleuﬂuzcp D.e, = R (T} e, - R npx(w)eu (17)

A HoA

where

4Ty n TR
SRR £ BETE T8 SR S S R

oo

-R% a0 = 3, B0y Ty = (o)

m - m
= {Bpwx - 3,0 + [wp,wll} o {Ppllwl} u (18)
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with w, = (wlmn) . On imposing the metricity condition for the te-

A
trads we obtailn

H _ b n o H '
n__vpl(r) = R np;&(m)e\) e {19)

The curvature scalar R(g,I') may then be expressed as R{e,w) where

_ 1 pAp mn
Rie,w) = 3 B (e) R px(“’ ’
VAD.
Ap s et af _aPer -1 P.d etV
Hoale) =e e -e e =3e e € qmn (T). (20)
m H 1/2

where e:=det(eu) =l/det(em)==(—det(guv)) is scalar density of
weight +1.

1/2

The Lagrangian for the gravitational action z(-9g Rilg,T)

in the first order form may then be written in terms of e‘: and

a
®xmn s

_ .1 _1 P .4 UVAp Jmn
L = _2|<2 e Rie,w) _-——aKz eu e, qumne R Ap‘“’, (21)

where M=1 = M,/ (87) 1/2 _ 5 4x10'®

= GeV. The equations of motion are

obtained through Palatini's procedure by varying'eﬁ and Wy in-

dependently. The variation* with respect to tetrad leads to

n 1l _n _ .2 .1
e R; -3 €, R =K 5ta (22}
*We note
= o P.4 1 _uvpd _ _uw_v_p_A _mnpq
e € e’ = =
HVEA STLNCLS emnpq r B € ememepetl €
p m n_g 1 uvpA n U _p_A _mpq
e Epvpkep = e.ue\)f;)t Emnpq L~ € ev emepeq £ .



CBPF-NF-012/86
- 1 -

nm
p

defined through the variation in the action for the matter Iﬁ

where Rncte;m)==R U(Q)ez and the energy-momentum tensor 13 ig

- 4 m U
GIM = Id_x Ty Gem (23)
in analogy to the definition in the case of matter with integral
spins of the symmetric energy momentum tensor GIH/G gw=-(l/2)'rw.
With regard to the variation of_u))ulm we derive ecasily the Palatini .
identity

mn mn y mn
-8 ™ =°®p‘5‘°x ';;915% (24)

where Gmen is a good tensof and after dropping the surface temms

we find
3 “pamf V51D, ) o] - B, () €] - <*Cap (25)
where the spin density ca is defined by 4I =(l/2){d“x cl Sw m£.
mé M ml A
We notice that only the non-minimal covariant derivative appears
in (25) and if we use the metricity poStulate for the tetrad
this field equation reduces to an algebraic'equation in view of
(16) relating torsion with the spin density of the matter fields
other than the gravitation.
We remark finally that the gravitino field wu transforms as
a spinor under the Lorentz rdtations while as a vector under the
general coordinate transformations because spinors are world
scalars

S, = 20,0, + (3,50, + (17202 My (26)
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where ian =(l/4}[7m,yn] are the generators of spin-l/2 field. The

action for the gravitino will be discussed in the next Section.

3 LAGRANGIAN FOR N=1 SUPERGRAVITY®

The simplest theory of pure supergravity may be formulated in
terms of the vierbein field and a Rarita-Schwinger spin-3/2 field
wu. The coupling of the latter to the gravitation however, must be
most or non-minimal in order to preserve the gauge invariance con
straint qu==3ua of the free Rarita-Schwinger action analogous to .
the most minimél coupling of the Maxwell field to gravity. The su

pergravity Lagrangian in the 'second order formulation is given by

N _1 _uvpo s D
Lgg = == eRleule,v)) = PP oy (D -Gy )
(27)

where

w'l.lf.m = &u_tm(e) + K.u_tm(‘p) = muzm‘Erw) r

i 2= -

Kutm =7 K (quzwm-$u¥mw£ + mEYuwmi ’ (28)
() ) _ (A e LT -
Y, =¥,y ~where y = (Y7)y_o is constant matrix and .@p- (B3 0¥ )

indicates the non-minimal covariant derivative acting.on spin-1/2
fields. The curl SD[pwo} is covariant like the curl a[uAv]’ Each
term of the action may be shown to be invariant under diffeomor-

fisms as well as under local Lorent; rotations. The minimal action

+ Y£m=% [YK:Y-m] =iM£m .
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considered here is the complete action for simple supergravity in
four dimensional space~time. In five and eleven dimensions one needs
extra four-fermion couplings and also anti-symmetric tensor fields:
The supergravity action above may be shown to be invariant under
the following local supersymmetry transformations

£

K gt 1

where DIJG = (3 + = 2 u!;m(e'w” ®)E. These transformation laws as well
as the Lagrangian can be derived by an iterative procedure in the
gravitational constant by starting with the free Lagrangian {(k=0).
The 1inearized-vierbein can be written as eu£:=n_£4k:h-£ where
h hZudemnnbestﬁe free graviton spin-2 field. For k=0 the Lagran

gian is invariant under two separate abelian gauge transformations

(snw = 3;_1_"'\:""’ + avcp(x) ; Wu = au“(x’ (30)

and the following rigid supersymmetry transformations

£m

8hy, = Sy, ¥, +8v b, . L3 by e (31)

uv ulm

We may use Noethers step by step procedure menticned before to
arrive at the non-linear Lagrangian along with the local super-
symnetry transformation laws. We note that at the coupled level
the two abelian transformations independent at.{the. linearized
level combine into an irreducible non-abelian locﬁl s.s. trans-
formation law. This is analogous to the case of the local Yang-
-Mills transformation 6v3==D£Aa =3£ﬁa-if:cvzﬁ° which at the 1i-

nearized level alsc splits into an abelian gauge transformation
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and a global Yang~Mills rotation.

The local algebra, e.g., the commutator of two local symme-
tries may be calculated stfaightforwardly. We find, for example,
that as in the case of rigid supérsymmetry in the local case as
well the commutator [§_,8 ] when acting on[the‘fermionic fiehi_wu
generates a term proportional to the gravitino field equations in
dicating the need for introducing auxiliary fields in the theory
which are known for simple supergravity in the second order for-
mulation. Moreover, along with producing the expected general co
ordinate tfansformation there are alsc found terms on the r.h.s.
which represent a local Lorentz and a local supersymmetry trans-—
formation. We will not dwell on these details and remark only that
including auxiliary fields, a scalar; a pseudoscalar and an axi-
al vector AP, the local algebra in the second order formulation
does 'close' contrary to the case of the first order ﬂnﬁhLmﬁnm.
The supergravity theory may also be shown to be a gauge theory
of the super-Poincaré group and may alsc be derived as the geome
try of superspace.’ Corresponding to the graded conformal group

a conformal supergravity theory can alsc be constructed.

4 SUPERGRAVITY COUPLING TO MATTER

4.1 Non~linear realization of supersymmetry. Coupling of Volkov~
—Akulov field :

When the global supersymmetry is realized in the spontancous
ly broken mode the resulting 'geoldstino' field A corresponding to
the broken N=1 supersymmetry has a non-linear s.s. transformation

law along with an inhomogeneous term given by®
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6r = de + & (teya (32)

where € and A are Majorana spinorsand we use four component notation.
The unbroken Poincaré transformations are, however, realized.li-
nearly on A. This is analogous to the case of original sigma mod
el where the massless Goldstone piohs transform non-linearly un-
der the broken SU(Z) generators while linearly under the unbroken
SU(2) and the effective low energy Lagr#ngian is a non-linear mod-
el. The constant 'd' of dimension 2 indicates the square of the
8.8. breaking scale and <6A>0 =d.6 #0 indicates that the super-
symmetry is broken. It is easily shown ﬁhat the above non-linear

transformation closes into the supersymmetry algebra
(8,611 = -21(8 vl )a,A (33)
Y27%1 2Y Ty19/ |

No other fields are needed to make the realization faithful. We
note also that if p(x) is another field with the hamogenecus trans
formation law Gp==é(iyzc)3£p(x)'then the algebra closes on p as
well. The simplest non-linear Lagrangian invariant under supersym
metry up to a divergence is given by

az 4

d Tt n -- & +3 irfaaa s0@) o)

2
L, ==% det (st - L1

where the dots represent the interaction terms %(TmmenqulTi)
i

dz
A(X2)2 = 0. The Noether supercurrent is derived to be

+ 0(T%) + 0(T*) where Tmn ‘Xymanx and the serie teminates since

J o=idy A+... , 5 3" 20 (35)
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and <0|Ji|k3>==id(YL)AB. The positive vacuum energy density az/2
shows again that the supersymmetry is broken.
When the supersymmetry is promoted to be local one a non-dia

gonal term K$£J§

= xd(¥.y A} will be added to the Lagrangian, say,
if we folibw the Noether coupling procedure. Deser . and ’Zuminob
studied the coupling of Volkov-Akulov Lagrangian to de Sitter su
pergravitys and showed thét under the assumption of a wvanishing
cosmological term, the gravitino acquires a mass ~d? while the
goldstine field can be absorbed into a redefinition of the fields
eE and wu. The super-Higgs effect for general interaction of the
chiral sﬁpermultiplets and gauge supermultiplet will be described
in the following sections. We remark that the Higgs mechanism for
gauged supersymmetry algebra is distinct from the same mechanism
for the gauged Lie algebras owing to certain poéitivity proper-
ties of superalgebras.nghe supersymmetry restricts the scalar
field content which determines the spontaneous breaking and the
vacuum energy. The overall scalar potential has a unigue form ance

the supersymmetry variations of the fermionic fields in the theo

ry are given.

§ The V-A Lagrangian gives rise to a negatlve cosmological term —dze/Z We

may add to the Lagrangian a supersymmetric cosmological term 3m®e + ime¥ i q;
with the positive cosmological constant while sllghtly modifying the L
transformation laws to have a local s.s., invariance., The vanishing of .the
cosmological constant in the total Lagrangian determines m=d. Choosing the
gauge A =0 (or alternatively redefining the gravitino field through a lo-
cal s.s, transformation with parameter A which eliminates the propagation
of the goldstino field) we obtain in the theory besides gravitation a mas-
sive gravitino apart from the interaction terms.
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5 GENERAL COUPLING TO YANG-MILLS THEORY"

The N=1 pure supergravity Lagrangian can be coupled in a lo
cally supersymmetric fashion to an arbitrary Yang~Mills system
which is specified by the gauge group K and by the transformation
properties under K of the set of chiral matter supermultiplets. The
presence of the dimensional coupling~+constant k. in pure supergra
vity Lagrangian leads to a non-renormalizable theory even if the
matter-gauge system coupled to it is renormalizable one. We should
rather demand instead that after the coupling to supergravity the
resulting non-renormalizable terms are such that in the flat space

limit, M, +«, the theory becomes renormalizable. In supergravi-

Pl
ty a.spontaneously broken, locally supersymmetric theory, admits
as a global limit, an explicitly broken, supersymmetric theory
with soft s.s. breaking terms. The most complete form of the in-
teracting theory was given by Cremmer et al. and we will adopt
their notation. The component fields of left-handed chiral super
-multiplets Si transforming according to representation R of the
gauge group K will be indicated by (zi,xLi,hi) where i labels the
representation index, ng stand for the generators in the repre-
sentation and o is the group index labelling the adjoint repre-
sentation. The gauge fermions are called A% while Fﬁv indicate the
field strengths of the gauge bosons.

The arbitrariness of the interacting supergravity-Yang-Mills
Lagrangian consists essentially in a non-canonical modification
of the chiral and Yang Mills kinetic terms. They involve respec-
tively a real gauge invariant function G(z,z*), called K&ﬂsm'gg

tential, and an analytic (chiral) function of the complex scalar

fields z; written f ,(z) which transforms as the symmetric pro-
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duct of the adjoint representation of K. The requirement of lo-
cal supersymmetry in its turn proliferates them in the interac-
tion terms as well as ;n the local s.s. transformation laws. The
scalar field in supergravity thecories appear as coordinates of
a Kihler manifold whose metric enters in the scalar kinetic terms
which has a form characteristic of supersymmetric non-linear sigma

model. The final Lagrangian has the following form

Lgg +Lp + Dpp +Dpy + L4y g (36)

where the bosonic part is given by (k=1)

-t. __1 i Hood _ 1 w4 AT

€ Lyg=-7 R-G ;D z.D"z*) _ 3 RefaBFﬁvF +3 ImfaBF‘;vF .

-1_ *_Gi_ij_ i ...1(13_- -
-e Lp-V(z,z )=e’[G (G ), Gj 31 +3 R'E(fas D D) _v'c+vg (37)

where Vc and Vg are the chi;al and gauge parts of the scalar po-
tential resPectively. The covariant derivatives are covariant w.
r.t. the gravity and the gauge group and we define Gi==aGlazi,
G, = 3G/az*", Gij =22¢)az, 02+, D_ =gaGi(Ta)ijzj with g_ indicating
the gauge coupling constant associated to the normalized genera-
tors. We note that in the positivity domain of the spin-1 kinetic
term the gauge field contribution Vg is a semipositive definite
function. We will describe latter the necessary and sufficient
conditions to obtain a semipositive definite V_. The fermionic ki
netic and mass terms are listed below while for the L(4)F we re-
fer the reader to the original reference where the s.s. transfor

mation laws are also given in complete form*!
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-1 _ .1 B 1 cHVPO
¢ Lpx "'4‘R8faBXOLEM - 79 e” YLY5Y DY

i= j i -1 o, BBy
-1 7w - 2 i .
e LFM = eG/ wwcuvwv'n-a-wn.y'[eel Glel -3 qG1 an A% ]
G/Z— 1j I -1k, ij J ol
[G + GG Gsz G x4 +21505 2" T X Xy

2
{% G/ GLGkLtX: -1g Ref G 'I'Y:I Z, ka} XE +h.c.

(38)

-1 .k
+ ffch

where Du is covariant both with respect to the gauge group and
gravitation., We list also the scalar field contributions to the

fermionic local s.s. variations of the fermion fields

Lo

-

H

+
N -

ol
GR RerBDB * es ]

_ 1. 6/2, =1, ]

S0, = 3 vep et Ll (39)

We remark that in arriving at the above Lagrangian it is ne

cegsary that G has the following form§

G(z,2*) = J{z,2*) +1n[g(z)]? (40)

where the superpotential g{z) is a non-~vanishing analytic func-

tion of z,. We note that J and g are defined upto a Kdhler trans

When g=0 proper substitution rules must be used to obtain the correct Lagran
gian.
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formation

J —3 J + £(z) + £%(z2%) , .
{(41)

The Lagrangian above is also implied in a superfield formulation
where the extension of the global supersymmetry action to local

supersymmetry should look like
-2 1 _ 1 a _ab
Id“z E[$(s,s e“") +Re(§ gis)) + Re(ﬁ faB(s) W'a e? WE) (42)

where ¢, g, f are three input functions, R is the chiral scalar
curvature superfield and E is the superspace determinant. In the
complete Lagrangian ¢ and g loose their independeﬁt meaning and
enter only through G above where J is related to ¢. The goldstino
field is uniquely identified in the local supersymmetry under con-
sideration by the spin-1/2 fermion which couples to the gravitino

- gauge field in LFM

i

_ G/2 i N Y. T
= =[e”/ % gty = 3D AT (43)

My

6 THE SUPER-HIGGS EFFECT IN N=1 SUPERGRAVITY

In the standard Higgs mechanism the local gauge invariance
allows a spin-0 .Goldstone boson, corresponding to a spontanecusly
broken rigid symmetry, to be rotated away such that the initial-

ly massless gauge boson with the states of helicity ]l acquires
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a third helicity-0 state becoming consequently massive - the spontaneous
breaking of a local gauge symmetry. The corresponding super-Higgs
mechanism may be shown to occur and the problem of the apparent non-
-existende of the massless goldstino particle of spontaneously broken
rigid supersymmetry is thus overcome in the context of local super
symmetry.

We observed earlier that Vg is semi—positivé definite in the
positivity domain of the kinetic term of the Yang-Mills field. The
chiral part V ofathe scalar potential is .the difference between
two positive definite terms due to the positivity properties of the
Kihler metric Gij which is present in the kinetic termsof the spin-0
and spin-1/2 particles of the chirﬁl. supermultiplets and as
such may assume positive, negative or vaﬁishing value. Thus we may
obtain the super-Higgs effect with vanishing vacuum energy (Min-
kowski space) since it is no more an order parameter for broken 1lo
cal supersymmetry contrary to the case of rigid supersymmetry. More
over broken supergravity is possible even in the presence of a sin
gle chiral supermultiplet in contrast to the global supersymmetry
case.

Through the minimal coupling ﬁR.YnL+ h.c. the local supersym-—
metry allows the goldstino to be rotated away by a special choice
of the supersymmetric gauge while the previously massless gravitino
with the states of helicity #3/2 acquires the states .of helicity 1/2
and becomes massive. A necessary and sufficient condition for spon
taneously broken supersymmetry requires that one of the quantities

. eG/ZGi , p® =9‘aGi (Tot)ij 2 (44)
igs different from zero at the minimum of the scalar potential, e.q.,

(aV/azi)z‘z =0. If we may arrange also a vanishing vacuum energy
’ o
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at the minimum, Va =V(z°,zg) =0, i.e. a vanishing cosmological con-
stant, then Minskowski space is a solution of the vacuum field e
quations and on this background the gravitino mass has its usual
meaning and it is given by the value of the Kahler potential m

3/2°
/2 analogously to the manner the value <H>, fixes the gauge

=M eG
boson mass.

In the absence of supersymmetry breaking, Gi=0, p*=0 the
vacuum energy, V, = =3 M4 el < 0, is negative which corresponds to
anti-de Sitter (G£0) or Poincaré (G=-w) Supergravity with nulti-
plets degenerate in mass. The super-Higgs effect due to the broken
supersymmetry on the other hand may occur in Minskowski, de Sitter
or anti-~-de Sitter space and Vd?>0 always describes a broken su-
pergravity.

We consider first the case of 'minimal' coupling of the su-

pergravity to Yang-Millis system defined by
r Fap = Oas (43)

s0 that all the kinetic terms are canonical and the Lagrangian de

pends only the superpotential g{z). We have

G(z,z*) = ziz*iluz-c-lnlg('z)lz/bla ’

G = :-1a<;/azi =z*i/M+Mql./g '

,
my,, = Meb/?2 - ezz*_’m (lgtz)|/m*y ,

zz* [M?

v, = e tlo, gl* - 3tlg(=z)]2/M%)) (46)
1

where g'1 =agfazi and D, = a/azi+ z*' /M2 is the KRihler covariant
1
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derivative., The supersymmetry 1ls broken if at least one of the
Kidhler covariant derivative of the superpotential is non—vanishing.
When M +» with z, fixed the gravity becomes unimportant leaving
behind the familiar condition of the broken global supersymmetry.

In the simplest case of a constant superpotential g=m?,
(0%=0), we find

z.z*i/}{2
V=mfel . (zz*/M* = 3/M?%) (47)

which has its stationary points at z,=0 and z = 2M. The supersymme

try is unbroken  for z;, =0 with V_=-3 M2 (m This point, how

372) "
ever, corresponds to a_lqcal maximum of the potential. The other
values on the contrary correspond to minima with some non—vanishing
D, g = z*/M?%, Thé s.s. is broken with a negative vacuum energy V =
= -e’m®/M? corresponding to anti-de Sitter vacaum with the 'appa

rent' gravitino mass em®’/M2,

Y,

FIG. 1. Scalar potential with constant g for 'minimal' coupling.

The example shows that.the supersymmetry may now be broken .even
in the presence of one matter supermultiplet and the supergravity
breaking minima may be the lowest ones even if supersymmetric

stationary points exists.
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The Polonyi superpotential g=m?(z+B) offers itself as an ex-
ample where we may fine tune the parameter B such that a broken
supersymmetry minimum is obtained with vanishing vacuum energy,
V,,=0. We £ind D g =m? [lez* (z+8)/M?] and D_g =0 does not have any
solution fbr z in the case [B[< 2M and consequently the supersym
metry is certainly broken for such vaiues of B. The chiral poten

tial 1s given by

v, = @ |21/ |y ian (zip) |2 = 3M2]2e8]2)F  (48)

It is straightforward to show that we can obtain absolute minimm

with V. =0 at z_=% (/3 -1)M 1f 8 =£(2-/3)M and where D_g=/3 m* with

the gravitino mass given by

- m2/m) e(3-12

m {49)

3/2

Performing the shift, say, z > 2+ {/3I-1})M in Vc we may calculate the
mass square of the real scalars which are found to be 2/§(m3/2)2

and 2(2-/3) (m )2. The scale of the supersymmetry breaking de-

3/2
fined by the first term of the potential is given be

M2 = <e
5

2
zz*IZHZIqul>O = /fIm? e(/gnl) /2 (50)

and we find Mi::/? Mm We note that the scalar field acquires

3/2°
a v.e.v. of the order of the Planck mass while the scalar masses

are of the order of the gravitino mass and

/.? (51)
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For the minimal coupling the term L., which determines  the

fermion mass matrix reduces tol!?

e Ly = G”[w rC vva-ﬁk-Yﬁ'L,—-g— ﬁLnL]

+ xLln xLJ +2xL1M A +l“ ap B-rh c. (52)
where ﬁL==e'G/2nL and the spin-1/2 fermion matrix has the form
ij ij |1 j
M = [G -3" G ¢']
ia i, i o ol
MaB =__% e—G/Z DaﬁB- (53)
The quadratic mass relation may then be derived to be§
2 3[2 2) 2 20,00 ~ O 24
Super trace M? = 2 (=1} V(2 + m} = (1) (0] , -<*DD%) - 25 D" Tr T

(54)

where the last term is only possible for Abelian U{l) factors of
K with Tr T 4 0. If we set my,,=0 and k=0 we get back the mass re
lations of spontaneously broken globally supersymmetric Yang-Mills
theories. The above relation is a consequence of the simltaneous
occurence of the Higgs and super-Higgs effects.

It has been recently realized that certain N=1 supergravity

model theories may have semi-positive definite potential pemiting

See Ferrara, ref. 1l and the references cited therein.
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them at the tree level a vanishing cosmological constants even in
the presence of broken supersymmetry. A necessary and sufficient
condition for having a semi-positive definiﬁe potential in the
general case is glven by det(-¢) <0 where ¢ is the hermitian ma-
trix (Bz/aziz*j) exp(-G/3). In particular the necessary and suf-
ficient condition for flat potential'(vcEO) is det(¢)=0.

The chiral potential may be re-written as follows, N denoting

the number of chiral supermultiplets,

N+3 N .
-3 -1, j.i. 03
{G li 3 aj e

V. o=>e (55)
NZ
The flatness of the potential requires a particular Kahelr poten

tial such that

N

@Y. data.e 3 a0 (56)

i j =

* A particular solution is
3 ¥ -

G = -% § Inif; (z) « £3(2%)] (57)

: 3 N R .
which is equivalent to G=u-ﬁ Z £n(zi+z*1) upto field redefini-

1 ‘ '

tions z + £(z). The curvature tensor for the Kahler manifold le

is defined by'?

Rij - 3iaj n det(Gij) (58)

For the above solution we cobtain

(59)
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indicating an Einstein manifold. However, this property alone is
not_enough to ensure the flatness of the potential. We remark that
for flat potentials the vanishing of the cosmological constant oc
curg naturally at the classical level wheather the supersymmetry
is broken or not. The gravitino mass in such models .is undeter-
mined and in such so called 'no-scale' models one hopes to gﬂ:éll
the low energy scale parameters from the Planck mass through the
radiative corrections and the mechanism of dimensional transmula-
tion (and renormalization group equation). One of the main fea-
ﬁures of such supergravity models is the non-minimality of thé ki
netic terms of the scalars which form a non-compact symmetric Kahler
manifold, viz, SU(l,l)/U(l) in the less symmetric case and SU(n,l)/
/SU(n)x U(1l) in the maximally symmetric case where n here is the
number of gauge non-singlet_complex scalars fields. Such global
non-compact groups play an essential role in N 24 extended sﬁper-
gravity theories. The non-compact group invariance seeminhly gua-
renteeing a flat potential may be a relic of an underlying theo-
ry. In fact the effective potential derived from EgxEg superstring
model!® also has such a non-compact symmetry.

Consider the case of one scalar field with ({k=1)

G(z,2*) = ~3 £n (z+2*) 4'-:tn|c|2 (60)

where g=¢ is a constant superpotential. We fﬁﬂ.".eGlsz=3-<3|c|/ (z+'z*)5-/2:

3/2
'

G/2 - .
= e = |e|/(z+2*) R .= (2/3) G, , and V =0 for any

M3/2
value of z. The supersymmetry is broken when c#0 but the gravitino
mass is non-vanishing but undermined. The Kahler manifold is an Eins
tein space with constant curvature and its isometries form a non-

~compact SU(1l,1l) group. The Lagrangian for the gauge singlet scalar
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Z reads as

(3.2) (3Vz*%)
3/=G ——t— gV (61)
(z+2*) 2

which describes a non-linear sigma model with an SU(1l,1)/U(1l) glo

bal symmetry. Furthermore the SU(1,1) MSbius transformations

: az+18’

2 *(375:3 a,8,Y,5 real with o8 + 8y =1 (62)

leave the whole Lagrangian, except the gravitino-goldstino mass
term, invariant after simultaneous chiral rotations on the fer-
mionic fields. For c¢=0 the supersymmetry.is not broken and m3/2=0
while all SU(l,l) breaking terms drop out from the Lagrangian. For
c#£0 the supersymmetry is spontaneously broken and simultaneously
the SU(1,1) symmetry is broken down to an U(l)NC'aefined by the
imaginary translations 2z +z+iB.

The existence of non-compact and ancmaly free global ~ symme-
try seems necessary along with a ‘no-scale'?® model to obtain a
vanishing cosmological constant. The S§U(n,l) 'no-scale' model is
based on the following G

*»1

G = -3ln(z+z* - ——) + In|g(¢;)|? (63)
where the superpotential g depends only on the 'observalbe' (sec-

tor) gauge non-singlet chiral superfields ¢ while the singlet =z

belongs to the 'hidden®' sector and has the form

gle;) = c+d; 4 e3e" (64)
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The gauge singlet plays the similar role as in the simple case con
sidered above and the parameter ¢ breaks supérsymmetry spontaneous
ly. The scalars potential is positive semi-~definite and flat a-

long the directions (3/’2)”2

i(z-2%) and —(3//8)1n(z+z*~¢, ¢* /3).

Recently, superstring models have been proposed to solve the
problems of gquantum gravity, of unifying all the fundamental in-
teractions, of flavour and the cosmologlcal constant. The effec-
tive low energy theory thaiﬁed from the ten dimensional EaxEssg
perstring theory after the compactification of the extra six di-~
mensions on a Ricéi flat manifold is found to be based on the fol-

lowing Kihler potentiall®
G = -3In(z+z*-¢.9" ") +1n|W(S,6,)|? - In(s+s*) (65)

and a simple non-trivial chiral kinetic function for the gauge su-
perfield strength Wa, fuBWW' faB= GaBS' Here W(S,-q;i) is an ef-
fective S-dependent superpotential of another *hidden' sector
gauge singlet chiral superfield S which is generated by the 'hid
den Es' gaugino condensation and the gauge non-singlet c¢bservable
fields ¢ . The resulting theory has a 'nb-scale' (su(1,1)/u(l))x
X (8U(n,1)/SU(n)xU(1l)) structure. The local s.s. breaking scale
at the tree level is a non-~vanishing (undetermined) gravitino mass,
which has to be fixed by, say, .a dynamical determination of S. The
limiting low energy theory'’ is obtained by taking the flat lim-

it, M_, >~ with mjiz fixed and dropping out decoupled and super-

Pl
heavy fields. The renormalized non-minimal kinetic function for
the gauge field, faB==(S+b1mU(¢i)), gives rise to a gaugino mass
/2 and it is argued currently that it is responsible for the

dominant source of global supersymmetry breaking in the observa-
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ble sector to produce via radiative corrections non-zero scalar
masses (for sleptans, for example) for the gauge non-singlet fields
$,. The supéfgravity theories may be then regarded as effective
theories for the light particle states once integration over.the

infinitely many massive modes of the superstring sPéctrumlww been

performed.
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