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ABSTRACT

We give a new class of inhomogeneous exact solutions
of Einstein field equations. They generalize the dust-~filled
models found by Szekeres. In the course of time a- subclass

of models present a friedmannian phase.
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In the context of classical cosmology, it is important
to obtain inhomogeneous exact soluﬁions of the Einstein field
equations for imperfect fluid as source of curvature, for several
reasons. One the most interesting of them is related to the
present entropy of the universe. As is well known, the rate of
entropy produced by nonadiabatic mechanisms in an initially
homogeneous background seems to be insufficient to account for the
high entropy per particle of the universe [, 2]. So, it is often
believed that mechanisms, such as shear viscosity or heat conduction
in the early inhomogeneous universe, can generate all necessary
entropy and also be responsible by the high regulari‘ty in the
structure of the universe at the cosmologica{ scale nowadays [3].
This gquestion has a close correlation with the program of chaotic
cosmology (4, 5].

On the other hand, there are few inhomogeneous exact
solutions that can be used as realistic universe models. A
remarkable exception is the family of dust-filled solutions found
by Szekeres [6]. Several theoretical questions have been examined
in this background [7,8,9,10) . These solutions are divided in two
classes usually denoted by classes I and II. The models of the
first class generalize the Tolman-Bondl solutions and are useful
to study nonsymmetrical gravitational colapse [7]. Those of the class II
are more important as cosmological models, because these can
closely approximate, over a finite time interval, the FRW dust
modelsl[BL In a recent paper [11], this last result has been
generalized for a fluid in non thermal equilibrium state. Actually
only the behaviour of one particular model of class II was
investigated. The FRW models with euclidean sections were

obtained in the limit of a large cosmological time. Here, we
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show that it is possible to include the hyperbolic and closed
FRW models too.
Consider now the line element of Szekeres' cosmological

models class~II [8]. (in our units 877G = ¢ = 1)
as? = at? - gZ%ax? - r%(ay? + nZaz? | (1)
where

Q=o0ft, x, y,2z) , R=R(t) and h = hiy)

The Einstein field equations for a fluid with heat flow are
1 _ ;
RaB - gaBR = = [(p + p)VaV8 - pqﬂs + anB +_qBVaL. (2)

where Va' p and p are the four velocity of matter, the mass-energy
density and the pressure respectively; q, is the heat flow and

satisfies the equation qav“ =0 .

In the comoving coordinates system (V© = Gg), the
nontrivial Einstein equations ( « 2 3/3t and Q , = aQ/axi
!
i=1,2,3:=%x,vy, 2) are
R2) o OR% ¢ ZROR - O o ~h2(Q on +bh .Q . + hh ..Q) (3)
QR7p = QR™ + ZROR = Q 55 33 700 8 o PR R0
2 “ .2 -1
RP: -2RR -~ R +h'22h 3 (4)
- L L4 -2 —1
QRp = ~QR - QR - QR + h™“R (9'33 + hh'ZQ'z) v (5)
2 - .o R | .
h"QRp = -QR = QR =~ QR + R 'Q ,,, (6)
r
q1 = 0, (7)

- - ¢ (8)
Qq, = @ R R -0 ,,
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-3=
Qq.. = Q 'R_1§ - 6 ’ (9)
3 f3 . ’3
0=Q.h"'h . -q
,30 B2 = Q33 - (10)

From Eg.{7) and condition qav“ = 0 , the heat flow is restricted
to qu = (0, O, qyr q3). When the pressure is zero, these equations
are easily integrated. The mass energy density and the heat flow.
are defined by Egs.(3), (8) and (9), whereas the remainder
equations give us the metrical components. In this case,

solving (4} we obtain

2RE + B2+ e =0 (11)

and

-1
h,22h = = £ . {(12)

Then R satisfies the standard equation of FRW models and ¢ = 0, #*1
is the curvature constant of the bidimensional section t = const,
x = const [6, 8].

For all values of ¢, the Q function is given by

Q = AR + BM + T (13)

where

M{t) and

[
(

A(x, y, z) , B=Blx,y,2) , M

T Ti{x, t)

The models can be classified according to the values of
£. The mass energy density, the components of heat flow and the

functions A, R, B, M and T will be given below in each case.
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In what follows 0,.v, n, o, v, §, B and y denote arbitrary

functions of x. RO is a positive constant and w is the
usual parameter defined by dt = Rdw . We will use the notation
of Ref.[8].

Elliptic Model € = +1 , h = siny

A = (ocosz + vsinz) siny + ncosy ,
B = (acosz + ysinz) siny + Scosy '
R = 2R sinzii t = R_(w inw)
o T = R,(w - sinw .
M = R cot -2 (1 + Zsinzﬁi)
- To 2 2 ’
w w ' w
T-B(T cot—z—-‘l)-n-ucot—é— ‘
6RA - B + 6R B cot —
p = % , (14)
QR
3R0 ‘
q, = 5 { (acosz + ysinz) cosy - $siny] , (15}
QR '
3Ro
Qy = ——5— [ {(ycosz - asinz) siny] . (16)
QR

Hyperbolic Model ¢ = -1, h= coshy

A = (ogcoshz + vsinhz) coshy + nsinhy .
B = (acoshz + ysinhz) coshy + dsinhy .
R = 2R_ sinh®% t = R_(sinhs - ©)

(o} 2 ! o '
M = R coth 4 (1 - 2sinh®4

w W ' w
T =B‘1r coth 5 - 1) + pcoth =5 '
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-5-
L. ' [F1]
- 6R A + B - 6R B coth =~ {17)
R = ’
or?
3RO ]
q, = 3 [ (acoshz + ysinhz} sinhy + dcoshy] , (18)
QR
3Ro .
g5 = 3 [ {asinhz + ycoshz) coshy] , (19),
QR '

For completeness we list the case € = 0 presented in the Ref.[11],

in this notation.
Parabolic Model e=0 , h=11:
A=B(y?+2%) +0y+vz+n,

B=a(y2¥zz)+yy+ 8z,

R = £2/3
M = t-1/3,
T e __g_ Bt4/3 . ut'1/3,
-1/2
3QR

QR

200z + & (22)
Qr?

k!

To see the relation between our models and Szekeres

solutions we must take B = 0 in all cases. The resulting solutions are the
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corresponding models of Szekeres class-TII [8]. The asymptotic
behavidur of physical quantities can be seen by retaining only the
leading terms in the variable t for € = 0, or iﬁ the variable w

fgr e = £1, in all expressions. For dust filled solutions (BI= 0),
this question was studied by Bonnor and Tomimura [8].1 In .our case

(B # 0), the evolution depends alsoc on the arbitrary functions.

In general, these solutions start as inhomogeneous and anisotropic
models and remain inhomogeneous and anisotropic. However, if the
arbitrary functions are suitably restricted, a Friedmannian era

can be obtained in certain limits.‘ For € = %1 it is sufficient

to take B({x) = 0, and for € = 0 we have taken RB({x) =‘a(x) =0

(see Ref.[11]1). In the hyperbolic case the FRW phase occurs in the
limit of large cosmological time {w »> 1), whereas in the closed model
we must take the limit where the parametric coordinate w tends to

the value n i.e., when the bidimensional section t = const,

X = const has maximum radius. Actually- one can see from
Eqs.(14)~{16) and (17)-(19), that the intensity of heat flow

)1/2

g = (—qaqa decreéses to zero faster than the density in these
limits. It seems that this FRW.phase for closed models was not suspected
in the Ref.[8]. Such as in the "flat case" [11], it can be easily
shown that the spacetimes of our models are Petrov I type
{algebraically general); for nonzero heat flow. But when the heat
flow is zero, the models are Petrov D type. For their minor
importance in the cosmological.problem, the other models of class-II
were not generalized here. Up to now, pressure effects were not
considered, but our experience with the "flat case"” strongly suggests
that our results will not be coﬁéiderably modified if isotropic
pressure 1s added. We\intend'to examine aﬁ length the evolution,
pressure effects and the thefmodynamics of the models in a

forthcoming communication.
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